
www.manaraa.com

Pekka Abrahamsson
Michele Marchesi
Frank Maurer (Eds.)

 123

LN
BI

P
31

10th International Conference, XP 2009
Pula, Sardinia, Italy, May 2009
Proceedings

Agile Processes
in Software Engineering
and Extreme Programming

www.manaraa.com

Lecture Notes
in Business Information Processing 31

Series Editors

Wil van der Aalst
Eindhoven Technical University, The Netherlands

John Mylopoulos
University of Trento, Italy

Norman M. Sadeh
Carnegie Mellon University, Pittsburgh, PA, USA

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

www.manaraa.com

Pekka Abrahamsson Michele Marchesi
Frank Maurer (Eds.)

Agile Processes
in Software Engineering
and Extreme Programming

10th International Conference, XP 2009
Pula, Sardinia, Italy, May 25-29, 2009
Proceedings

1 3

www.manaraa.com

Volume Editors

Pekka Abrahamsson
University of Helsinki
Department of Computer Science
Helsinki, Finland
E-mail: Pekka.Abrahamsson@cs.helsinki.fi

Michele Marchesi
University of Cagliari
DIEE Department of Electrical and Electronic Engineering
Cagliari, Sardinia, Italy
E-mail: michele@diee.unica.it

Frank Maurer
University of Calgary
Agile Software Engineering/e-Business Engineering (ase/ebe) group
Calgary, Canada
E-mail: frank.maurer@ucalgary.ca

Library of Congress Control Number: Applied for

ACM Computing Classification (1998): D.2, K.6

ISSN 1865-1348
ISBN-10 3-642-01852-1 Springer Berlin Heidelberg NewYork
ISBN-13 978-3-642-01852-7 Springer Berlin Heidelberg NewYork

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12681709 06/3180 5 4 3 2 1 0

www.manaraa.com

Preface

The field of software engineering is characterized by speed and turbulence in many
regards. While new ideas are proposed almost on a yearly basis, very few of them live
for a decade or a longer. Lightweight software development methods were a new idea
in the latter part of the 1990s. Now, ten years later, they are better known as agile
software development methods, and an active community driven by practitioners has
formed around the new way of thinking. Agile software development is currently
being embraced by the research community as well. As a sign of increased research
activity, most research-oriented conferences have an agile software development track
included in the conference program.

The XP conference series established in 2000 was the first conference dedicated to
agile processes in software engineering. The idea of the conference is to offer a unique
setting for advancing the state of the art in research and practice of agile processes. This
year’s conference was the tenth consecutive edition of this international event. Due to
the diverse nature of different activities during the conference, XP is claimed to be more
of an experience rather then a regular conference. It offers several different ways to
interact and strives to create a truly collaborative environment where new ideas and
exciting findings can be presented and shared. This is clearly visible from this year’s
program as well. Looking at the conference program you can see a large variety of dif-
ferent types of contents ranging from regular full research papers to tutorials, workshops
and other activities, which are designed to stimulate participant collaboration.

The XP conference continues to increase its academic standing year by year. The
XP Committee will seek to build upon this trend in the coming years. The XP paper
submissions went through a rigorous peer-review process. Each paper was reviewed
by at least three Program Committee members. Of 40 papers submitted, only 12 were
accepted as full papers (30%). The papers represent a set of high-quality research
studies addressing a wide variety of different topics ranging from deep technical is-
sues to a wide range of human issues in agile software development including novel
ideas on agile software research. Besides the regular conference activities, the pro-
gram also featured a conference-within-a-conference open space event that allowed
participants to hold discussions on late-breaking topics on the fly. This year’s XP also
presented a number of high-profile keynotes from Mary Poppendieck, Bjarte Bogsnes
and Ivar Jacobson. XP 2009 also included the largest workshop offering ever seen in
the conference’s history. The participants had the option to participate in more than
20 workshops and 16 tutorials.

We would like to extend our gratitude to all those who contributed to the organiza-
tion of XP 2009. The authors, the sponsors, the Chairs, the reviewers, and all the
volunteers: without their help, this event would not have been possible

March 2009 Pekka Abrahamsson
Frank Maurer

Michele Marchesi

www.manaraa.com

Organization

Conference Chairs

General Chair

Michele Marchesi University of Cagliari, Sardinia, Italy

Program Chairs

Pekka Abrahamsson University of Helsinki
Frank Maurer University of Calgary, Canada

Local Organizing Chairs

Giulio Concas University of Cagliari, Italy
Sandro Pinna Sardegna IT, Italy

Tutorial Chairs

Rachel Davies Agile Experience Limited, UK
Philippe Kruchten University of British Columbia, Canada

Workshop Chairs

Charlie Poole Poole Consulting, USA
Jutta Eckstein IT Communication, Germany
Torgeir Dingsøyr SINTEF ICT, Norway

Special Events Chair

Fraser Cisco Research ,USA

Poster Chairs

Alberto Sillitti Free University of Bozen Bolzano, Italy
Pasi Kuvaja University of Oulu, Finland

PhD Symposium Chairs

Karlheinz Kautz Copenhagen Business School, Denmark
Kieran Conboy NUI Galway, Ireland

Panel and Activities Chair

Steven Freeman M3P, UK

www.manaraa.com

VIII Organization

Tools and Demonstration Chairs

Daniel Kalström Golden Gekko, Sweden
Werner Wild Evolution, Austria

Open Space Chairs

Willem van den Ende willemvandenende.com, The Netherlands
Lasse Koskela Reaktor Innovations, Finland

Sponsorship Chairs

Ko Dooms Philips, The Netherlands
Jari Still F Secure, Finland

Publicity Chairs

Europe: Minna Pikkarainen VTT Technical Research Centre of Finland
Oceania: Nils Brede Moe SINTEF ICT, Norway
America: J.B. Rainsberger Canada
Middle East: Ahmed Sidky X2A Consulting, USA
India: Naresh Jain India

International Student Volunteer Chair

Noura Abbas University of Southampton, UK

Official Photographers

Tom Poppendieck Poppendieck.LLC, USA
Hubert Baumeister Technical University of Denmark, Denmark

Web Chair

Enrico Marongiu Sardegna IT, Italy, enrico@xp2009.org

Program Committee

James D. Arthur
M. Ali Babar
Richard Baskerville
Robert Biddle
Stefan Biffl
Gerardo Canfora
Joseph Chao
Mike Chiasson
Yael Dubinsky
Tore Dyba

Hakan Erdogmus
Tor Erland Faegri
Jennifer Ferreira
Juan Garbajosa
Yasser Ghanam
Paul Gruenbacher
Geir Kjetil Hanssen
Orit Hazzan
Ron Jeffries
Kari Känsala

www.manaraa.com

 Organization IX

Frank Keenan
Mikko Korkala
Maarit Laanti
Stig Larsson
Kalle Lyytinen
Mary Lynn Manns
Angela Martin
Fergal McCaffery
Grigori Melnik
Sridhar Nerur
Dave Nicolette
Peter Axel Nielsen
Markku Oivo
Shelly Park
Joseph Pelrine
Gary Pollice

Daniel Port
Agerfalk Par
Knut Rolland
Barbara Russo
Outi Salo
Helen Sharp
Park Shelly
Giancarlo Succi
Tom Tourwe
Corrado Aaron Visaggio
Xiaofeng Wang
Barbara Weber
Don Wells
Laurie Williams
Hongyu Zhang

www.manaraa.com

Table of Contents

Keynote Papers

What They Dont Teach You about Software at School: Be Smart! 1
Ivar Jacobson

Beyond Budgeting in a Lean and Agile World . 5
Bjarte Bogsnes

Research Papers

Testing in Agile Software Development

Developing a Test Automation Framework for Agile Development and
Testing . 8

Eunha Kim, Jongchae Na, and Seokmoon Ryoo

Long-Term Effects of Test-Driven Development: A Case Study 13
Artem Marchenko, Pekka Abrahamsson, and Tuomas Ihme

Communicating Domain Knowledge in Executable Acceptance Test
Driven Development . 23

Shelly Park and Frank Maurer

An Empirical Study on the TDD Conformance of Novice and Expert
Pair Programmers . 33

Andreas Höfer and Marc Philipp

Teams and Organizations

An Exploratory Study of Developers’ Toolbox in an Agile Team 43
Irina Diana Coman and Giancarlo Succi

Balancing Individual and Collaborative Work in Agile Teams 53
Hamish T. Barney, Nils B. Moe, Tore Dyb̊a, Aybüke Aurum, and
Martha Winata

Organizational Enablers for Agile Adoption: Learning from
GameDevCo . 63

Jayakanth Srinivasan and Kristina Lundqvist

Migrating Defect Management from Waterfall to Agile Software
Development in a Large-Scale Multi-site Organization: A Case Study . . . 73

Kirsi Korhonen

www.manaraa.com

XII Table of Contents

Empirical Studies and Education

Perceptive Agile Measurement: New Instruments for Quantitative
Studies in the Pursuit of the Social-Psychological Effect of Agile
Practices . 83

Chaehan So and Wolfgang Scholl

A Survey of Perceptions on Knowledge Management Schools in Agile
and Traditional Software Development Environments 94

Finn Olav Bjørnson and Torgeir Dingsøyr

Empowering Students and the Community through Agile Software
Development Service-Learning . 104

Joseph T. Chao and Jennifer K. Brown

Putting Agile Teamwork to the Test – An Preliminary Instrument for
Empirically Assessing and Improving Agile Software Development 114

Nils Brede Moe, Torgeir Dingsøyr, and Emil A. Røyrvik

Short Papers

Standards and Lessons-Learned

Agile Software Development and CMMI: What We Do Not Know
about Dancing with Elephants . 124

Célio Santana, Cristine Gusmão, Liana Soares, Caryna Pinheiro,
Teresa Maciel, Alexandre Vasconcelos, and Ana Rouiller

Is ISO/IEC 15504 Applicable to Agile Methods? . 130
Giuseppe Lami and Fabio Falcini

Lesson Learnt from an Agile Implementation Project 136
Paul Murphy and Brian Donnellan

A Study of Risk Management in DSDM . 142
Sharon Coyle and Kieran Conboy

A Storytest-Driven Approach to the Migration of Legacy Systems 149
Fabio Abbattista, Alessandro Bianchi, and Filippo Lanubile

XP Practices: A Successful Tool for Increasing and Transferring
Practical Knowledge in Short-Life Software Development Projects 155

Gabriel Tellez-Morales

Customer Communication and User Involvement

Distributed Agile Development: A Case Study of Customer
Communication Challenges . 161

Mikko Korkala, Minna Pikkarainen, and Kieran Conboy

www.manaraa.com

Table of Contents XIII

Customer and User Involvement in Agile Software Development 168
Karlheinz Kautz

Integration of Extreme Programming and User-Centered Design:
Lessons Learned . 174

Zahid Hussain, Harald Milchrahm, Sara Shahzad, Wolfgang Slany,
Manfred Tscheligi, and Peter Wolkerstorfer

Optimizing Agile Processes by Early Identification of Hidden
Requirements . 180

Agust́ın Yagüe, Pilar Rodŕıguez, and Juan Garbajosa

Negotiating Contracts for Agile Projects: A Practical Perspective 186
Rashina Hoda, James Noble, and Stuart Marshall

Workshops and Tutorials

The Lego Lean Game . 192
Danilo Sato and Francisco Trindade

Agile Process Smells and Root Cause Analysis . 194
Dave Nicolette

Agile in Large-Scale Development Workshop: Coaching, Transitioning
and Practicing . 196

Thomas Nilsson and Andreas Larsson

What Does an Agile Coach Do? . 198
Rachel Davies and James Pullicino

Workshop - Mechanics of Good - Creating Well Functioning Distributed
Teams . 200

Lars Arne Sk̊ar and Jan-Erik Sandberg

Test-Driven User Interfaces . 202
Charlie Poole

The New New NEW! Product Development Game 204
Marc Evers and Willem van den Ende

Positioning Agility . 206
Nilay Oza, Pekka Abrahamsson, and Kieran Conboy

Scrum Board Game . 209
Stefan van den Oord and Wim van de Goor

XP2009 Workshop: Climbing the Dreyfus Ladder of Agile Practices 211
Patrick Kua

www.manaraa.com

XIV Table of Contents

Software “Best” Practices: Agile Deconstructed . 213
Steven Fraser

XP Workshop on Agile Product Line Engineering . 215
Yaser Ghanam, Kendra Cooper, Pekka Abrahamsson, and
Frank Maurer

Test Driven Development: Performing Art . 217
Emily Bache

Business Value Game . 219
Artem Marchenko and Vasco Duarte

Where Agile Research Meets Industry Needs: Starting from a 10-Year
Retrospective . 221

Xiaofeng Wang, Kieran Conboy, Minna Pikkarainen, and
Michael Lane

Continuous Integration – How Do You Know That Your Application
Still Works? . 224

Thomas Sundberg

Executable Requirements in Practice . 226
Pekka Klärck, Juha Rantanen, and Janne Härkönen

Product Owners Jamboree . 228
Patrick Steyaert and Tom Tourwé

Explaining the Obvious – How Do You Teach Agile? 230
Erik Lundh

Architecture-Centric Methods and Agile Approaches 232
Muhammad Ali Babar and Pekka Abrahamsson

3rd International Workshop on Designing Empirical Studies: Assessing
the Effectiveness of Agile Methods (IWDES 2009) . 234

Massimiliano Di Penta, Sandro Morasca, and Alberto Sillitti

Telling Your Stories: Why Stories Are Important for Your Team 236
Johanna Hunt and Diana Larsen

Elements of an Art - Agile Coaching . 238
Erik Lundh

Posters

A Survey on Industrial Software Engineering . 240
Adnan Causevic, Iva Krasteva, Rikard Land,
Abdulkadir S.M. Sajeev, and Daniel Sundmark

www.manaraa.com

Table of Contents XV

Modeling Spontaneous Pair Programming When New Developers Join
a Team . 242

Ilenia Fronza and Giancarlo Succi

Summary Reporting for a Linked Interaction Design-Scrum Approach:
How Much Modeling Is Useful? . 245

Frank Keenan, Namgyal Damdul, Sandra Kelly, and David Connolly

Software Product Line Engineering Approach for Enhancing Agile
Methodologies . 247

Jabier Martinez, Jessica Diaz, Jennifer Perez, and Juan Garbajosa

FLEXI Project Management Survey . 249
Anna Rohunen, Lech Krzanik, Pasi Kuvaja, Jouni Similä,
Pilar Rodriguez, Jarkko Hyysalo, and Tommi Linna

Demonstrations

Documentation by Example . 251
Daniel Brolund

Alaska Simulator - A Journey to Planning . 253
Barbara Weber, Jakob Pinggera, Stefan Zugal, and Werner Wild

Using Metric Visualization and Sharing Tool to Drive Agile-Related
Practices . 255

Tadas Remencius, Alberto Sillitti, and Giancarlo Succi

ActiveStory Enhanced: Low-Fidelity Prototyping and Wizard of Oz
Usability Testing Tool . 257

Ali Hosseini-Khayat, Yaser Ghanam, Shelly Park, and Frank Maurer

FitClipse: A Tool for Executable Acceptance Test Driven
Development . 259

Shahedul Huq Khandkar, Shelly Park, Yaser Ghanam, and
Frank Maurer

Using Digital Tabletops to Support Distributed Agile Planning
Meetings . 261

Xin Wang, Yaser Ghanam, Shelly Park, and Frank Maurer

Additional Material: Panels

The Future of Lean in an Agile World . 263
Steven Fraser, Pekka Abrahamsson, Rachel Davies,
Joshua Kerievsky, Mary Poppendieck, and Giancarlo Succi

www.manaraa.com

XVI Table of Contents

What Skills Do We Really Need in Agile Software Development? –
Discussion of Industrial Impacts and Challenges . 267

Minna Pikkarainen, Kieran Conboy, Daniel Karlstöm,
Jari Still, and Joshua Kerievsky

Perspectives on Agile Coaching . 271
Steven Fraser, Erik Lundh, Rachel Davies, Jutta Eckstein,
Diana Larsen, and Kati Vilkki

Author Index . 277

www.manaraa.com

What They Dont Teach You about Software at

School: Be Smart!

Ivar Jacobson

Ivar Jacobson International
ivar@ivarjacobson.com

http://www.ivarjacobson.com

Abstract. One of the most popular buzzwords in software development
is agile. Today everyone wants to be agile. That is good! However, being
agile is not enough.You also need to be smart. What does that mean?
Smart is about being agile, but it is also about doing the right things, the
right way. You can become smarter through training. However, without
experience your alternatives are too many and only a few of them are
smart. Experience is of course something you can get sooner or later,
but it takes time if you must learn by your own mistakes. This is where
the utilization of “smart-cases” becomes essential. In this talk, we will
describe a large number of smart-cases when developing software. It is
about working with people, teams, projects, requirement, architecture,
modeling, documentation, testing, process, and more.

Keywords: Agile software development.

1 What Does It Mean to Be Smart?

The essence of being agile is being smart. I have for several years expressed that
the most important character you need to have to be a great software developer
is to be smart. In several of my columns I have summarized what you need to do
to be successful by saying: You need to be smart! What does that mean? Most
people know intuitively what “being smart” means in everyday language, but
what does it mean for software.

“Things should be done as simple as possible but no simpler” to quote Albert
Einstein and that expression says in a nutshell what it means to be smart.

Smart is not the same thing as being intelligent. You can be intelligent without
being smart. I know lots of people who are intelligent but not smart. You can
be very smart without being very intelligent.

Smart is not the same as having common sense. You can have common sense
without being smart, but if you are smart you must however have common sense.

Being Smart is an evolution of being agile, but it is also about doing the right
things, the right way. With a popular notion you may say that smart = agile++.

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 1–4, 2009.

www.manaraa.com

2 I. Jacobson

2 What They Don’t Teach You at Institutes of
Technology

Interestingly, many professors in software have never built any useful software.
This is natural if they have grown up in the academic world where software en-
gineering is not as fine as computer science. Thus, many professors cant possible
teach software engineering with any passion.

As a consequence new ideas about software engineering have come from prac-
titioners around the world. The best ideas come from practitioners with an
appreciation of science, people that agree with Kurt Lewin: “There is nothing
as practical as a good theory”. Examples of good theories were Newtons laws,
and Einsteins relativity theory. A lot of research represents useless theories.

Personally, I adopted this motto thirty years ago and it has been leading my
work all these years: components, use cases, Objectory that became RUP, SDL
and UML, and now practices. Many other people such as Kent Beck and Ken
Schwaber have made similar contributions. This is the true essence of software
engineering and it stands on a sound theoretical basis, meaning it can be ex-
plained so others can understand it and practice it. But, few universities teach
it and even fewer do it well.

However, these exceptional institutes that teach you software engineering
practices rarely would teach you how to be smart when working with these
practices. And this is fine. I am happy if they teach good practices, but to pro-
vide real value, each practice needs to be applied in a smart way, otherwise you
will do too much or too little. This is where the utilization of what we call “smart
cases” becomes essential. We have a large number of smart cases that relate to
working with people, teams, projects, architecture, modeling, documentation,
testing, process, outsourcing, and many more.

3 Smart Cases

Each smart case has a subject, a context, a typical case dealt with in an unsmart
way and in a smart way, and a key motto for how to be smart.

The mottos are critical, so let us start with some examples:

• People: Software is developed by people, not by process and tools.
• Teams: A software team is like a sport team with all needed competencies

to win.
• Project: Think big, build in many steps.
• Architecture: Start to build a skinny system, add muscles in later steps.
• Testing: Whatever you do you are not done until you have verified that you

did what you wanted to do.
• Documentation: Focus on the essentials - the placeholders for conversations

people figure out the rest themselves.
• Process: Dont throw out what you have, instead start improving from your

existing way of working, find your pain points and change one practice at
the time.

www.manaraa.com

What They Dont Teach You about Software at School: Be Smart! 3

And on it goes.
The unsmart/smart relationship helps us understand the balance. Lets take

two subjects, Project and Architecture:

Project
It is not smart to work in a waterfall manner, first specify all requirements,
then do the design and the code, and finally test it all. You will create a lot
of paper-ware but you wont know if this is what you want to build, you dont
know if it is testable, and you will discover serious problems with performance,
architecture, usability too late. It is smart to first build a small skinny system
and then build a little bit more, and a little bit more, before you release the
system to customers. Each time you build something, you must be able to run,
validate and test it.

Architecture
It is not smart to model everything in UML (happened often for enterprise
architecture projects). It is not smart to model nothing and go straight to code.
It is however smart to find exactly that something that is of importance to model
and code.

What is that something? It is about the most essential use cases and in par-
ticular about the most essential scenarios through these use cases. It is about
the components and in particular the parts of those components that realize
these essential scenarios. Thus, it is about the essentials. Now you may ask what
makes a scenario essential. An essential scenario is the response to the question:
“what are the most important scenarios the system is supposed to do”. Which
scenarios exercise the critical parts of the architecture? Which scenarios need to
work in order for us to say that the highest technical risks have been eliminated?

In general it is not smart to be extreme in what you do such as: model
everything or model nothing, follow a strict waterfall process or an unstructured
iterative approach, throw out what you have and start all over. It is smart to be
balanced to do what is needed right now but with an eye to the future.
How do you become smart?

I really think being smart is at the core of being successful in software. The
answer depends on who you are. Lets assume you are a leader of some sort, for
instance a project manager.

To become smart you need first and foremost to have knowledge and secondly
to have experience applying that knowledge. You need knowledge to understand
what software development is all about. You need to know how to get good
software, quickly and at low cost. It is as simple as that <grin>.

Good software is useful (obvious but not trivial), reliable (works always) and
extensible (can grow as long as you want to use it). You need to know how you
create good software which means you need to learn some technical practices
such as architecture, use cases and iterations/sprints.

Nothing makes you as quick (and agile) as having motivated people. You get
this by adopting proven agile practices such as how you work as a team, how
you organize your work, etc. We all need to be agile.

www.manaraa.com

4 I. Jacobson

The most powerful way to get software at low cost is by developing as little
software as possible. Instead you acquire the many pieces of software you need
from other sources. This is called software reuse. You can reuse your companys
old software, buy software from a vendor or download open source software. You
need to know how to put it all together with some glue and how to only develop
what is really needed. Thus you need some other more advanced practices such as
executable enterprise architecture, service-oriented architecture or product-line
engineering.

Thus you need knowledge on practices.
You also need experience in using these practices. This is not trivial. Expe-

rience comes from having seen a lot of what works and what does not, either
directly or through listening to others.This is a subtle (I hope) plug for what we
do - we work with many different projects and we gain insight into what works
and doesn’t. But it’s also a plug for communities, for being open to new ideas
and experiences, and to strive to be continuously learning. There is a saying that
good judgment comes from experience, most of which comes from bad judgment.
Except that you don’t need to repeat the mistakes of others to learn.

All of this to say, we should learn software engineering practices at school.
We should shorten the time to get experience of practices by collecting reusable
smart cases. We have started this. We hope others will contribute. I think that
would be smart by the industry.

Experience makes you smart through “focus” - knowing what to focus on and
what can be ignored. It’s not the amount of effort applied, but knowing where
and when to apply that effort.

4 Final Words

You may now ask, given that you have knowledge of important practices and
you have experience: “Will I now become smart?”

Of course eventually, it comes back to you. We cannot all become equally
smart but we can all become smarter.

www.manaraa.com

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 5–7, 2009.

Keynote: Beyond Budgeting in a Lean and Agile World

Bjarte Bogsnes

Vice President, Performance Management Development, StatoilHydro, Norway
BJBO@StatoilHydro.com

Abstract. We suggest that we need a fundamentally different philosophy and a
concept for how organisations are led and managed. We believe that it is time to
challenge the traditional management myths. The main goal of Beyond Budget-
ing is not get rid of budgets. The budget must go, but it is more the budgeting
mindset we need to get rid of, because it represents the old thinking that needs
to be changed. Based on the works of The Beyond Budgeting Round Table, we
review a set of 12 principles for a new style of contemporary leadership and
management.

Keywords: Beyond budgeting, lean development, agile development, leadership.

1 Introduction

The world around us has changed. Everything seems to happen faster and more unex-
pected than before. There is dramatically more uncertainty and change out there, and
it started long before the financial crisis. Understanding what might lie around the
next corner was much easier when I started my finance career in the corporate budget-
ing(!) department of the Norwegian oil company Statoil, back in 1983.

There will be more change in the future. Companies are shifting from mass produc-
tion orientation to knowledge intensive organisations where the human capital is the
most valued asset. Companies need to realise that their people are actually highly
competent and mature, and expect to be empowered, appreciated, and well - treated as
adults. People both want and can take responsibility. I hardly know anyone who
wakes up in the morning and goes to work with a firm determination of trying to do a
bad job. I believe most people want to do their best. Unfortunately, much of tradi-
tional management and leadership practices in companies often work as a barrier to
high performance rather than a support.

In this new environment, we need to respond faster and think differently about what
best motivates and drives great performance in organisations. The Beyond Budgeting
movement believes that the answer to these important questions lies in a fundamentally
different philosophy and a concept for how organisations are led and managed. We
believe that it is time to challenge the traditional management myths. We must let go
of the centralised “command-and-control” thinking, built on a negative “theory X”
view on people. We also argue that it is time to challenge the traditional beliefs about
control as well. Rather than a control, current management practices often create an
illusion of control. Indeed, our controls may seem to provide comfort in uncertain

www.manaraa.com

6 B. Bogsnes

times, but too often they do just the opposite of what they are intended for. We go so
far as to claim that they systematically destroy motivation and performance on a scale
few have understood so far.

2 Beyond Budgeting: The New Mindset

The main goal of Beyond Budgeting is not get rid of budgets. The budget has to go,
but it is more the budgeting mindset we need to get rid of, because it represents so
much of the old thinking, which we suggest it is time to leave behind.

In addition, we find that the budgets can also destroy the quality of what they are
meant to provide; good targets, reliable forecasts and an efficient resource allocation.
We argue that these three purposes cannot be combined in one process resulting in
one number. They also represent waste by consuming far too much time and energy.
Waste is produced first in the making of annual, detailed budgets and later in the
reporting and deviation analysis phase.

An increasing number of companies see the same problems and are exploring al-
ternatives to budgeting. The pioneer is the Swedish bank Handelsbanken, which com-
pletely abandoned budgeting in 1970. The bank has constantly been among the best
performing banks in Scandinavia since then, and is also the most cost effective uni-
versal bank in Europe. Other examples include companies like Toyota, Google, W.L.
Gore, Aldi, American Express, WholeFoods and Southwest Airlines, just to name a
few. It is not a coincidence that many of these also are Lean and Agile pioneers, be-
cause the underlying philosophy is very much the same.

3 Beyond Budgeting: Leadership Principles

The Beyond Budgeting Round Table1 (BBRT) was established in 1998. This is a
global network of companies seeing similar problems with traditional management
practices. BBRT has developed the following twelve principles, which together pro-
vide a robust and coherent alternative to traditional ways of leading and managing an
organisation.

Leadership Principles

• Customers. Focus everyone on improving customer outcomes, not on hier-
archical relationships.

• Organization. Organize as a network of lean, accountable teams, not
around centralized functions.

• Responsibility. Enable everyone to act and think like a leader, not merely
follow the plan.

• Autonomy. Give teams the freedom and capability to act; do not microman-
age them.

1 The present author currently acts as the chairman of the BBRT.

www.manaraa.com

 Beyond Budgeting in a Lean and Agile World 7

• Values. Govern through a few clear values, goals, and boundaries, not de-
tailed rules and budgets.

• Transparency. Promote open information for self-management; do not re-
strict it hierarchically.

Process Principles

• Goals. Set relative goals for continuous improvement; do not negotiate fixed
performance contracts.

• Rewards. Reward shared success based on relative performance, not on
meeting fixed targets.

• Planning. Make planning a continuous and inclusive process, not a top-
down annual event.

• Controls. Base controls on relative indicators and trends, not on variances
against plan.

• Resources. Make resources available as needed, not through annual budget
allocations.

• Coordination. Coordinate interactions dynamically, not through annual
planning cycles.

The importance of each principle, and the order to address them in, may vary across
companies depending on their business, history and culture. What is critical, however,
is that both the leadership and the process aspect are addressed in order to achieve a
sustainable change. All elements in the management model need to support the same
philosophy. It does not help to have great team values if the reward principles only
praise individual performance.

4 Way to the Future

Several communities and professions are waking up and rebelling against the old
management myths, for instance in the finance sector and within information technol-
ogy. We suggest that it is time to join forces to secure that lean and agile thinking
become the foundation for running the successful 21st century organisation.

My personal journey of heading up two Beyond Budgeting projects, first in Bore-
alis and later in Statoil is described in my new book (See [1] for details).

References

1. Bogsnes, B.: Implementing Beyond Budgeting – Unlocking the Performance Potential.
Wiley, Chichester (2008) ISBN : 978-0-470-40516-1

2. Hope, J., Fraser, R.: Beyond Budgeting. Harvard Business School Press, Boston (2003)
ISBN 1-57851-866-0

www.manaraa.com

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 8–12, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Developing a Test Automation Framework for Agile
Development and Testing

Eunha Kim, Jongchae Na, and Seokmoon Ryoo

NHN Corporation, Venture Town Bldg., 25-1 Jeongja-dong,
Seongnam City, Kyeonggi-do, 463844, South Korea

{eunha.kim,monster,seokmoon.ryoo}@nhncorp.com

Abstract. As software developers today, we all face problems of repetitive and
error-prone processes, a lack of a clear way of communication between stake-
holders, and risks of late defect discovery or release delays. In order to help
solve such problems, we implemented an effective framework for automated
testing, which combines the automation features of STAF/STAX and the ease-
of-use based on tabular input and output of FitNesse. This framework can sup-
port Continuous Integration as an automated testing framework to improve
software development processes. The greatest advantage of the framework is
the agility that allows for rapid delivery of high-quality software. In this paper,
we describe the practices and benefits of using the proposed framework.

Keywords: Test Automation Framework, Automated Testing, Agile Testing,
Continuous Integration, STAF, STAX, Fit, FitNesse.

1 Introduction

A growing trend in software development is to use testing automation tools which
dramatically improve productivity. Despite increasing automation solutions, a signifi-
cant amount of man-hours are still spent performing manual tests for all types of test-
ing such as new functionality, new platforms, or due to insufficient time and/or skills
to develop test scripts. In order to help solve such problems, we implemented an im-
proved framework for automated testing through the integration of FitNesse and the
Software Testing Automation Framework (STAF).

Fit [1] is an automated testing framework, developed by Ward Cunningham, to en-
hance collaboration in software development. FitNesse is a Wiki built on top of the
Fit framework which is used for automating acceptance test cases. Both Fit and Fit-
Nesse enhance the collaboration between customers, testers and programmers by
providing a single platform for communication. Yet it does not allow remote execu-
tion. STAF [2] is an open source, multi-platform, multi-language framework designed
around the idea of reusable components called services. STAF does allow distributed
execution, meaning that from a STAF control machine, tests can be executed that will
be sent to either the client or server machines, executed locally on the machine and
then returned back to the control machine for reporting. It is designed to be used
as pluggable STAX (STAf eXecution engine) for automated test case distribution,

www.manaraa.com

 Developing a Test Automation Framework for Agile Development and Testing 9

execution, monitoring and results analysis. From what I have seen of STAF, writing
in xml/python can be a bit messy, and although most of the python code can be ex-
tracted into libraries, we would still have to deal with the xml side of things. We
wondered if we would be able to obtain a clear overview of the test design and/or
plan.

Combining FitNesse and STAF is a powerful mix and enables us to communicate
with various stakeholders easily, because the workflow of tests and test environments
are graphically expressed into tables of input data and expected output data. Picking
up new builds automatically, installing them on remote machines, and executing tests
remotely can be accomplished by sending commands via STAF to the applications
and reporting the results back in FitNesse. This framework helps automate the distri-
bution, execution and results analysis of test cases [2]. It also aids communication
among the various stakeholders, using tables for representing tests and for reporting
the results of automatically checking those tests [1]. We first described details of the
proposed framework in a paper presented at ITNG2009 [3].

2 NTAF

The framework described in this paper is referred to as the NHN Test Automation
Framework (NTAF). Fig. 1 depicts the architecture of NTAF. NTAF provides multi-
ple benefits by automating repetitive and error-prone processes. In this section we
explain the powerful advantages of NTAF.

Fig. 1. The NTAF Architecture

2.1 Configurability

NTAF enables an end-to-end solution for test automation. The component of NTAF,
NTAF Fixture, provides control structures to handle the execution flow of the job.
The NTAF Fixture has a simple but powerful syntax which controls the flow of exe-
cution by using commands that redirect the path of execution when appropriate.
Originally, Fit tables are executed in sequence. However, NTAF Fixture is designed

www.manaraa.com

10 E. Kim, J. Na, and S. Ryoo

to make it significantly easier to automate the workflow of tests and test environ-
ments. They can represent loops to execute a task repeatedly (e.g. LOOP, ITERATE,
CONTINUE, BREAK), parallel executions to be executed in parallel (e.g. PARAL-
LEL, PARALLELITERATE), time-based executions to control the length of execu-
tion time (e.g. TIMER), logic flows which evaluate conditions (e.g. IF/ ELSEIF/
ELSE), and the keywords may be nested [2]. They support distributed environments
so that multiple servers with clients can be configured and tested at the same time. It
is very effective in reducing duplicate codes and modules from test applications.

2.2 Reusability

We developed our own services to interface with Build Verification Test (BVT) and
Bug Tracking System (BTS), reusable components that provide all the capability in
STAF. Each service is provided in a jar file. The BVT service is invoked from the
STAF service request to build a test suite. Before submitting a STAF service request,
the BVT service must be registered via the configuration file [2]. STAF service
request can be sent to the BVT service on the local machine to another or remote
machine in the STAF environment. BVTs are usually run on a set schedule automati-
cally. A build is considered a success if all the tests in the BVT have passed. After
building a test suite, FitNesse results page with an unexpected value marked in red is
displayed as shown in Fig. 2. When errors or exceptions arise in testing actions, the
BTS service registers them automatically so that BTS can help developers and testers
keep track of reported software bugs in the work.

Fig. 2. Automated bug report to the BTS

2.3 Visibility

Fig. 3 shows an example of the STAX job for testing web application. It is for run-
ning the HTTP service in multi-thread environment. However, writing STAX xml job
file is not easy and the workflow of test is difficult to understand through xml file. To
write tests and check the results in the tabular format is very simple and clear to the
various stakeholders and developers as shown in Fig. 4. Fig. 4 is the same test work-
flow as Fig. 3. It is available for a developer or tester to write tests and configure the
workflow of tests by tables. NTAF takes advantage of the powerful syntax of STAF
to be able to develop better Fit tests. It reduces the effort for creating workflows of
test cases and increases the visibility of test workflow. NTAF is suitable for running
regression test suites to compare the results of the same tests run against a previous
version of tables.

www.manaraa.com

 Developing a Test Automation Framework for Agile Development and Testing 11

Fig. 3. Example of the STAX job definition

Fig. 4. Example of the NTAF workflow

Fig. 5. Hudson Dashboard Displaying the Latest Build Status

www.manaraa.com

12 E. Kim, J. Na, and S. Ryoo

2.4 Extensibility

NTAF provides powerful compatibility and extensibility. We selected the Hudson and
incorporated NTAF into it. In previous work [3] we incorporated NTAF into the
CruiseControl to perform a CI environment. It could be alternated with other CI serv-
ers or build tools that can poll for changes in the version control repository on a speci-
fied time interval [4]. Fig. 5 illustrates Hudson dashboard to visualize our project
status. It shows inspection reports, code metrics, and the results of the last build and
view build reports, including compilation errors, automated test results, and details
about what files have changed since the last build of our project.

3 Conclusion

We have been using NTAF for testing the practical products, such as database manage-
ment tool, web application, network library, open API, enterprise service bus system,
HTTP service, and XSS (Cross Site Scripting) filtering service at the NHN Corporation.
Our case studies indicate that the use of NTAF can aid teams in developing a higher
quality product.

Concurrent defects are often hard to find in the testing environment and are there-
fore found by the end user, or in stress test, which makes them very expensive [5].
Therefore, we have started to work on integrating with a tool for testing multi-
threaded programs on NTAF. Concurrent faults may be automatically detected by a
tool that exposes and eliminates concurrency-related bugs if NTAF executes each test
multiple times. In the future, NTAF can be used as a full-featured, cost-effective
automation framework including an effective method for finding concurrent defects.

Finally, we want to emphasize that NTAF is an open source framework. We rec-
ommend you to download NTAF and try it out. You can contact us if you would like
to participate in the development process.

References

1. Mugrigde, R., Cunningham, W.: Fit for Developing Software. Prentice Hall, Englewood
Cliffs (2005)

2. Software Testing Automation Framework (STAF), http://staf.sourceforge.net
3. Kim, E., Na, J., Ryoo, S.: Test Automation Framework for Implementing Continuous Inte-

gration. In: 6th International Conference on Information Technology: New Generations.
IEEE Press, Los Alamitos (2009)

4. Duvall, P.M., Matyas, S., Glover, A.: Continuous Integration. Addison-Wesley, Boston
(2007)

5. Edelstein, O., Farchi, E., Goldin, E., Nir, Y., Ratsaby, G., Ur, S.: Testing Multi-threaded
Java Programs. IBM System Journal Special Issue on Software Testing 41(1) (Feburary
2002)

www.manaraa.com

Long-Term Effects of Test-Driven Development

A Case Study

Artem Marchenko1, Pekka Abrahamsson2, and Tuomas Ihme3

1 Nokia, Visiokatu 3, FIN-33720 Tampere, Finland
artem.marchenko@nokia.com

2 Deparment of Computer Science, P.O.Box 68, FIN-00014 University of Helsinki,
Finland

pekka.abrahamsson@cs.helsinki.fi
3 VTT Technical Research Centre of Finland, P.O.Box 1100, FIN-90571 Oulu,

Finland
tuomas.ihme@vtt.fi

Abstract. Test-Driven Development (TDD) is one of the most widely
debated agile practices. There are a number of claims about its effect on
the software quality and team productivity. The current studies present
contradicting results and very little research has been performed with in-
dustrial projects, which have used TDD over an extensive period of time.
This paper is reporting the long-term effects on a three year-long applica-
tion of TDD in a Nokia Siemens Networks team. We present qualitative
findings based on interviews with the team members. We conclude that
TDD has been found to improve the team confidence in the code quality
and simplify significantly the software maintenance. The examined team
did not notice any significant negative effects over the long-term TDD
application and is eager to continue improving the practice application.
The authors suggest that results bear direct relevance to the industry
and academia. Further research avenues are indicated.

Keywords: Test-Driven Development, agile, case study, long-term.

1 Introduction

Lately agile software development methods have gained a significant amount
of attention. Test Driven Development (TDD) is the core part of the contem-
porary agile practice. It is claimed to raise significantly the code quality and
handle the requirements better, than ”more traditional, heavy-weight, predic-
tive methods”[1]. There are not many studies on the long-term effects of TDD
especially in the industrial context. Existing studies in the industrial context
present controversial results varying from none to significant improvements in
quality and small improvements to reasonable losses in productivity.

This paper aims at filling in this knowledge gap and addresses the following
research question: What are the effects of the long-term application of the Test
Driven Development?

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 13–22, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.manaraa.com

14 A. Marchenko, P. Abrahamsson, and T. Ihme

In the current paper we report on the longitudinal application of TDD by a
team working for Nokia Siemens Networks in Finland. With the help of semi-
structured interviews we gathered the team experiences and perceptions on what
it means for them to apply TDD and what effects of TDD they experienced.

The rest of the paper is organized as follows: section 2 provides an overview
of prior research on the effects of Test-Driven Development. Section 3 describes
the research environment, method and setting. Section 4 presents the results.
Section 5 presents the discussion on the findings and section 6 concludes.

2 Related Work

Lately agile methods gained popularity increasingly. It is evident that at the
moment there are not many empirical studies on it. The most recent and in-
depth systematic review of 1996 articles and studies in the area of agile software
development identified only 36 empirical studies of acceptable rigor, credibility
and relevance [2]. However, there are a number of studies on the Test-Driven
Development technique. For the purposes of this study we reviewed only studies
performed in the industrial context, i.e. with professional developers working on
the applications demanded by business.

Majority of the studies report results on short-term projects. Only Williams
et al. [3] studied a project in which TDD was applied for longer than a year.

2.1 Studies Conducted in an Industrial Context

Nagappan et al. [4] report on three Microsoft and one IBM studies that pre-
release defect density of the four products decreased between 40% and 90%
relative to similar projects that did not use the TDD practice. Subjectively, the
teams experienced a 15-35% increase in initial development time after
adopting TDD.

Maximillen and Williams [5] assessed Test-Driven Development at IBM on a
project of 71 KLOC of non-test code and found that the application of TDD
reduced the defect rate by about 50% compared to a similar system that was built
using an ad-hoc unit testing. The study also found a slight decrease in developer
productivity when employing the TDD practice. Maximillen and Williams also
suggest that the TDD practice aided them in producing a product that would
more easily incorporate late changes.

Bhat and Nagappan [6] studied two Microsoft teams that practiced TDD on
a medium sized projects (6 KLOC and 24 man-months, 26 KLOC and 46 man-
months) and compared them to the similar teams doing similar projects without
TDD. The results of the study indicate significant increase in quality of the code
(greater, than two times) for projects developed using TDD. However, the results
also indicate that the projects also have taken at least 15% extra upfront time for
writing the tests although the unit tests have also served as auto-documentation
for the code as well as for code maintenance.

www.manaraa.com

Long-Term Effects of Test-Driven Development 15

Williams et al. [3] studied an IBM team who had sustained the use of TDD for
five years and over ten product releases. Their data indicates that the TDD prac-
tice can aid in the production of high quality products. The study notes the per-
ceived moderate productivity losses, but suggests that the quality improvement
will compensate for it. In particular the authors suggest that the use of TDD may
decrease the degree to which code complexity increases as software ages.

Williams et al. [7] studied the development of a relatively large (64 KLOC
of new code) product at IBM and found out that the code developed using
TDD showed approximately 40% fewer defects during functional verification
and regression tests compared to the similar project developed without TDD.
The study claims that the result has been achieved with ”minimal” impact to
developer productivity.

Rendell [8] examined the introduction of TDD to a large project and identified
that even after initial enthusiasm developers could come to resent TDD as they
perceive it as a technique which reduces their efficiency. Rendell also identified
that dogmatic TDD application could lead to increased costs without the cor-
responding return on investment. Rendell also notes that for more experienced
developers the use of TDD helps to make the code more testable.

3 Research Design

This study covers the results of adopting Test-Driven Development and applying
it for three years in a particular team working for a global telecommunications
company.

3.1 Research Setting

The examined team works for Nokia Siemens Networks on a Java-based rich
client platform for network management-related applications.

In 2005, the platform originally developed in Germany was moved to Finland
and since then the whole team, except for a single expert consultant, was co-
located in the city of Espoo. The team is following the Scrum process [9]. At the
moment there are five developers, a lead designer, Scrum Master and Product
Owner. The team is a part of a bigger program that is located partially in the
same building, partially in other cities.

At the moment of transfer to Finland according to the lead designer impres-
sions the platform consisted of legacy code [11] with a significant amount of bugs,
no more than 10-20 unit tests ”not done in TDD way and the tests were really
terrible”. According to another team member, no tests were made at all and the
first poor tests were made by the current team, not yet proficient in TDD.

The adoption of Test-Driven Development was happening not in isolation, but
concurrently with the adoption of several related agile practices. In particular, at
about the same time the team improved the Scrum process introduced shortly
before by starting to apply pair programming, collective code ownership and
continuous integration.

www.manaraa.com

16 A. Marchenko, P. Abrahamsson, and T. Ihme

In summer 2005, shortly after the move to Espoo two of the team members
including the lead designer participated in a TDD training and the lead designer
was ”test-infected”. A program-level decision was made to raise the test coverage
of the code (it was about 9% at that moment) and the software developers
started writing tests primarily with the goal of raising test coverage, mostly
during separate workshops.

Around the same time the lead designer participated in a one week ”hands-on”
training run by a TDD coach, which provided him with a practical experience of
working in a TDD manner with the team’s own code. A number of other issues
were also happening simultaneously. Refactoring was almost non-existent before
TDD, and pair programming was adopted as a natural part of TDD with one of
the persons ”navigating” the design towards the desired state.

After two years into the adoption of TDD an expert from the same consulting
company was playing the role of Scrum Master and was driving the TDD efforts.
More recently, he was replaced with an in-house Scrum Master.

3.2 Research Method

The study was conducted using the case study research method [10]. It was seen
as the most appropriate choice due the nature and aims of the study. The devel-
opment team was contacted in October 2008. In November the lead designer was
interviewed over teleconference with notes shared via a screen sharing program
so that the interviewee was able to correct the notes during the interview.

During December all the current team members, including the lead designer
and one of their indirect managers (site manager) who was working with the
team for 19 months, were interviewed in-person individually with a total inter-
view record time of 4 hours and 40 minutes. Semi-structured interviews were
chosen in order to get the interviewees’ perception of the area. Questions pre-
pared in advance were used as discussion openers. This was also used by the
interviewer to make sure a particular topic would not be missed. Each time a
change was mentioned during the discussion the time of the change was asked
by the interviewer. The interview results were then systematically interpreted
by comparing the interview notes looking for common trends and differences.
The detailed list of questions is omitted here due to the lack of space. During
the interviews we aimed at figuring out:

1. What it meant for the team to apply TDD
2. How the TDD practice was evolving
3. What effect the team saw from applying TDD

3.3 Data Collection and Analysis

During the research we arranged 9 interviews with 8 people, adding to 4 hours
and 40 minutes of records outlined in Table 1. The two interviews were partic-
ularly short because the people interviewed either joined the team activities only

www.manaraa.com

Long-Term Effects of Test-Driven Development 17

Table 1. Amount of interview notes

Person Time on the team Interview
length

Notes length

Lead designer Three years 68 and 9 min 1206 and 174 words
Software developer Almost a year 57 min 798 words
Software developer A bit more, than a year 28 min 707 words
Site manager 19 months 43 min Formal notes were

not taken, only au-
dio records

Software developer One month 8 min 207 words
Software developer Three-five years 32 min 1055 words
Software developer
/ UI Designer

Eight months 26 min 399 words

Line manager One year 13 min 241 words

lately or they were not involved in the development activities and therefore were
seen as the type of informants that would not contribute to the study’s aim. As
we were looking for the team’s own observation about the effects, we were using
the site manager’s interview only for providing a context for the preparation to
the main interview session.

The interviews were analyzed by systematically extracting statements and
claims from the interviews together with a related time range whenever possible.
A sample extraction from a statement list is as follows:

– The consultant taught them to do TDD for every line of code (2 years ago),
but in reality he does not do it for every line of code.

– ”In some cases if I know where this (the code) is going (when using some
design pattern) then TDD is not used for every line of code.

– ”I have learned some of my own understanding of implementation of TDD
(during the last year). The main point is to test first and then (create) the
implementation.”

– Has learned more unit testing (jUnit), how to test user interfaces using unit
test utilities (UI for J or some extension for jUnit). (during the last year)

Finally, to validate our findings we used the member-checking approach and
asked all team members to study the validity of our interpretation. This sub-
sequently led to increased understanding and some minor modifications in our
results.

4 Empirical Results

In this section we present the aggregated summary of the interviews along with
the perceived challenges related to TDD. All the citations listed in this section
are quotes of the interviewees, sometimes slightly edited for readability.

www.manaraa.com

18 A. Marchenko, P. Abrahamsson, and T. Ihme

4.1 What It Meant for the Team to Apply TDD

Most of the interviewees described TDD exactly as it was described in the ap-
propriate literature [12] - ”You do not modify your code if you don’t have a
red test that will turn green after your modification.” Interestingly only one
team member mentioned refactoring as a TDD step when describing the TDD
practice. However, when discussion was on-going, all the team members clearly
described the importance of the refactoring step in the Test-Driven Development
cycle up to the point of claiming that the ease of refactoring was one of the main
advantages of the TDD technique - ”TDD gives you a possibility to refactor
your code,” ”You have a pretty high safety in modifying your code,” ”One of
the biggest effects [of TDD] is that it is easy to do even big changes in the code
as long as it does the same thing.”

Two team members mentioned that refactoring was there to remove the du-
plication from the code. One team members explicitly mentioned the need to
refactor the test code as well.

Interestingly all the team members, except for one newcomer, explicitly men-
tioned pair programming as a necessary and natural part of TDD. Further dis-
cussion revealed that at the moment all the production code of the team was
developed in the pair programming mode. ”I often confuse these two things. I
often think that TDD is pair programming.”

4.2 Evolution of TDD Since the Adoption

To our surprise, the team members identified almost no practice evolution over
the long time period claiming that most of the changes related to TDD are in the
psychological area - from the beginning it was very hard to write tests first for
all the production code - ”TDD is slower in the beginning, but it produces much
more healthy code”. Several team members also mentioned that refactoring skills
evolved over time as practitioners learned how to test-drive the code to a known
or standard (for the team) patterns [13].

4.3 Perceived Positive Effect of TDD

The interviewees identified the following positive effects of TDD:

Improved code quality and high level of confidence in the code quality.
All the team members identified the increased confidence in the code quality as
one of the main effects of TDD. All the team members felt that TDD improved
the code quality and made the defect fixing easier. ”I found TDD useful in many
cases, especially for bug fixes,” ”TDD reduces a number of bugs. I would say
it improves my way of working 10 to 20 per cent,” ”The difference is that now
we know that the code is working as opposed to the time when we did not
have an idea if the code was working or not, when three years ago we did not
have tests.”

www.manaraa.com

Long-Term Effects of Test-Driven Development 19

Improved code readability, understanding of the code and ability to
make even significant changes easily. All the team members noted that
TDD made the individual class code more readable. One of the team members
told that after he had started to apply TDD, it had helped him realize the
reasons for poor maintainability of the code he had used to write earlier. ”We
are talking about cohesion and dependencies, how much we have dependencies
in a class. TDD revealed those kinds of things in my code. I guess I understood
the reasons why I have created code that was not so well maintainable.” The
team members also noted that TDD not only helps to reveal the bad code, but
also helps to improve it even when significant changes are needed - ”One of the
biggest effects is that it is easy to do even big changes in the code as long as it
does the same thing.”

Having less overhead in code and documentation. Only the amount of
code and documentation that was really needed was created. ”Now I am writing
code that is really needed, because I won’t do any production code if I don’t have
a test. So I am not putting any extra stuff into my code anymore,” ”Test-driven
means that you specify the code by writing tests. You don’t write a document
like you have done waterfall. There isn’t that much documentation anymore, all
the documents are in the tests. In the test you define how your software should
work. I haven’t written any documents since I joined the team.”

4.4 Perceived Challenges in Applying TDD

All the team members were asked about the perceived challenges related to
the application of Test-Driven development. The challenges identified by the
interviewees were:

The high amount of discipline needed to rigorously apply TDD. Rig-
orous application of TDD requires an amount of discipline that can be rather
high for a team new to it. ”Sometimes it is so evident what corrections should be
made. The only problem is that there can be side-effects”, ”The most challenging
thing is to remember to use TDD.”

Applying TDD to the graphical user interface development. TDDing
user interfaces is more difficult because of both the technical complexity and
qualitative (human perception related) nature of some requirements - ”In UI
design you design the UI first without making any code. It may have been
already tested (paper, prototype) before making any code”. UI designer was the
only team member that reported that he was not doing all the code via TDD. ”In
April I used TDD 0% of time, now 50%, the amount of time spent with TDD has
increased at an increasing rate.” ”At the moment, however, some team members
always develop new GUI with TDD.”

Applying TDD to configuration related areas. ”Very hard to invent how
to do TDD when changes are made at XML files.”

www.manaraa.com

20 A. Marchenko, P. Abrahamsson, and T. Ihme

Applying TDD to legacy code that does not have tests yet. It takes
time to implement the very first tests in the given code area - ”You need to
study this legacy code first”.

4.5 Perceived Negative Effects Related to TDD

Negative effects of the TDD practice identified by the interviewees were:

Inefficiency for fixing defects that are difficult to reproduce. TDD is
difficult to use for the bugs that are difficult to reproduce and for bugs that
need a very complex and specific environment - ”It doesn’t make any sense to
automate it. It would be cumbersome.”

Potential decrease of the development speed. TDD can slow down the
development speed. ”When you start it can easily slow you down ten times. 15
minutes’ hack might take one day with TDD. Outcome gives better maintain-
ability, but sometimes it is too expensive.” On the other hand another team
member ”doesn’t feel that TDD has affected productivity.”

Too open and flat architecture. One of the team members told that TDD
encouraged the creation of many small files that, in his opinion, made the code
less readable than smaller amount of bigger files - ”From my traditional coding
point of view a bit bigger pieces and less of them is easier to read.” Another team
member told that the only thing that bothers him in TDD was that it made the
design more open - ”Sometimes from the design point of view you have to open
the class more than you would like to. To be testable you need to reveal more
internals of the class. That’s one thing, that I don’t like, but so far I haven’t
seen any bad effects of that.”

5 Discussion

This study reports on the perceptions of the team that was rigorously applying
the Test-Driven Development for three years. This study identified several posi-
tive and negative effects of the long-term TDD application. In particular it was
discovered that after years of applying TDD it could still be considered a very
valuable practice the team would not like to stop using.

The code quality-related results that confirm the increased level of the code
quality are in line with all the other reviewed studies except for the study focused
on the TDD introduction only [8]. Our study reports mixed impressions about
the development speed. Some team members claim that TDD slows them down,
while others tell that TDD makes them more productive. All the team members,
however, are confident that over the long term TDD pays for itself. That is in line
with the related studies and especially with the study on the five year project
performed by Williams et al. [3] that also suggests that the use of TDD may

www.manaraa.com

Long-Term Effects of Test-Driven Development 21

decrease the degree to which code complexity increases as software ages. Further
research is needed for figuring out the ”payoff point” and related factors.

During the interviews, most of the team members related the success of the
TDD adoption to the excellent initial trainings that included practical work on
the team’s own code and to the year-long presence of external TDD experts in
the team who helped the team learn the agile way. Further research is needed
for analyzing how much TDD success depends on the quality of training and
coaching.

The study also identified several effects of TDD that were not previously
identified in the related literature. These effects include a potential tendency
for the development of an architecture that is both too open and flat. We also
discovered that some of the team members perceived that TDD covers most
of the code level documentation needs. This is in accordance with what the
proponents of TDD have claimed for some time. The study did not reveal any
negative impacts for the team on having adopted this practice. Quite contrary,
they viewed this as a positive impact of TDD. Further research is needed for
figuring out whether such effects are common or specific to the particular team.

Summarizing the findings, we suggest that Test-Driven Development is a vi-
able technique for multi-year projects that may very well pay off for the poten-
tial productivity decreases and lead to higher quality products that are easier to
change according to the dynamic market requirements.

There are important limitations on the study. The team studied did not adopt
the TDD practice only, instead it came together with pair programming and
Scrum-based management practices. It has to be researched whether the combi-
nation of the practices was the real success factor. The team studied was using
Java which is known for good tooling support for unit-testing and refactoring.
The Java team results might be less applicable to the environments with poorer
tooling support, such as embedded C++. Finally, we investigated only a single
team’s adoption perceptions. This should be taken into account when attempting
to generalize the results.

The study results are qualitative and based on the interview results and a
member-checking validation of these results. Clearly, further research is needed
for analyzing the measurable quantitative effects of TDD. Further research is
also welcome on even longer term projects including more teams and focused
studies on the effect on the architecture.

6 Conclusion

This research studies the impressions of a team that has applied Test-Driven
Development on a rigorous basis for the duration of three years. This study
identified several perceived effects of the long term TDD application. We an-
swered the research question with a set of perceived positive and negative effects
observed by the team as well as with a set of challenges related to the TDD
application.

The results of the observations add to the empirical body of evidence on
TDD and bear significance for both industry and academia. Industry has more

www.manaraa.com

22 A. Marchenko, P. Abrahamsson, and T. Ihme

knowledge on what can be expected from the long-term TDD application and
whether it is worth pursuing, academia gets the knowledge gap filled in and new
research venues identified.

References

1. Wasmus, H., Gross, H.-G.: Evaluation of Test-Driven Development (2007)
2. Dyb̊a, T., Dingsøyr, T.: Empirical Studies of Agile Software Development: A Sys-

tematic Review. Information and Software Technology (2008)
3. Williams, L., Sanchez, J.C., Maximilien, E.M.: A Longitudinal Study of the Use of

a Test-Driven Development Practice in Industry. In: Agile 2007 (2007)
4. Nagappan, N., Maximilien, E., Bhat, T., Williams, L.: Realizing quality improve-

ment through test driven development: results and experiences of four industrial
teams. Empirical Software Engineering 13, 289–302 (2008)

5. Maximilien, E.M., Williams, L.: Assessing test-driven development at IBM.
In: Proceedings of 25th International Conference on Software Engineering,
pp. 564–569 (2003)

6. Bhat, T., Nagappan, N.: Evaluating the efficacy of test-driven development: indus-
trial case studies. In: Proceedings of the 2006 ACM/IEEE international symposium
on Empirical software engineering. ACM, Rio de Janeiro (2006)

7. Williams, L., Maximilien, E.M., Vouk, M.: Test-driven development as a defect-
reduction practice. In: 14th International Symposium on Software Reliability En-
gineering, 2003. ISSRE 2003, pp. 34–45 (2003)

8. Rendell, A.: Effective and Pragmatic Test Driven Development. In: AGILE 2008
Conference, pp. 298–303 (2008)

9. Schwaber, K.: Agile project management with Scrum. Microsoft Press, Redmond
(2004)

10. Yin, R.: Case study research: Design and methods, 2nd edn. Sage Publishing,
Beverly Hills (1994)

11. Feathers, M.: Working Effectively with Legacy Code. Prentice Hall PTR, Engle-
wood Cliffs (2004)

12. Beck, K.: Extreme programming eXplained: embrace change. Addison-Wesley,
Reading (2000)

13. Gamma, E., Helm, R., Johnson, R., John, V.: Design patterns CD elements of
reusable object-oriented software. Addison-Wesley, Reading (1998)

www.manaraa.com

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 23–32, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Communicating Domain Knowledge in Executable
Acceptance Test Driven Development

Shelly Park and Frank Maurer

University of Calgary, Department of Computer Science
2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4

{sshpark,fmaurer}@ucalgary.ca

Abstract. We present results of a case study looking at how domain knowledge
is communicated to developers using executable acceptance test driven devel-
opment at a large software development company. We collected and analyzed
qualitative data on a large software development team's testing practices and
their use of a custom-built executable acceptance testing tool. Our findings sug-
gest that executable acceptance tests (1) helps communicate domain knowledge
required to write software and (2) can help software developers to communicate
the status of the software implementation better. In addition to presenting these
findings, we discuss several human aspects involved in facilitating executable
acceptance test driven development.

Keywords: Executable Acceptance Test Driven Development, Requirements,
Ubiquitous language, Domain knowledge, Knowledge management.

1 Introduction

The purpose of the Executable Acceptance Test Driven Development (EATDD) is to
facilitate better communication between the customers, domain experts and the devel-
opment team by mandating that the requirements must be specified in form of execu-
table acceptance tests. This general idea is currently called many names: functional
tests [1], customer tests [2], specification by example [3] and scenario tests [4] among
many. Recently, EATDD is becoming very popular in the agile software engineering
community.

What is distinct about the EATDD process is that requirements are specified in ex-
ecutable acceptance tests by the customer instead of using natural language. An ex-
ecutable test either succeeds or fails, i.e. there is no ambiguity. Any specification must
be understandable and writable by domain experts as well as the development team
members. Evans stated that finding a common communication language or a Ubiqui-
tous Language [5] is important in communicating the correct requirements between
customers and the developers.

To pursue a better understanding of the functional requirements specification proc-
ess in EATDD in terms of how the domain knowledge is communicated across differ-
ent stakeholders, we performed a detailed case study at CGI [6], a large international
information technology and business process service firm with offices located in

www.manaraa.com

24 S. Park and F. Maurer

16 countries. The software developers at CGI in Calgary office were given a challenge
to build oil & gas production accounting software by their clients. Production account-
ing deals with accounting involved in acquisition, exploration, development and pro-
duction of oil and gas reserves. The production accounting domain knowledge is very
complex and no single developer can understand the client’s domain in its entirety. The
development team follows Agile development practices and started to use executable
acceptance test driven development (EATDD) based on its perceived usefulness for
communicating requirements between the developers and the business representatives.
The team built a custom in-house testing tool to facilitate their requirements elicitation
and acceptance testing process. The purpose of our case study is to understand how the
custom testing tool helped establish a Ubiquitous language between the business do-
main experts and the developers. This is a qualitative research paper that looks at how
the tools facilitated the communication of complex knowledge to the developers.

The primary audience for our research paper is researchers in EATDD field in Agile
development environments. In addition, the broader audiences include industry practi-
tioners who are interested in using EATDD. This paper provides a first in-depth longi-
tudinal case study on the EATDD practice. The project under study is running for four
years. We collected data about the software development project and corroborated our
findings with interviews and direct observations. We investigated their in-house cus-
tom executable acceptance testing tool and its impact on the development process.

Section 2 presents related research on EATDD. Section 3 presents a research
methodology and our research design. Section 4 provides background information
about the development project. Section 5 presents our observation. Section 6 dis-
cusses the significance of our research and section 7 presents the threats to validity in
our research design. Section 8 concludes the paper with some final thoughts on our
case study and presents the next step in our research.

2 Related Work

EATDD is inspired by test-driven development (TDD) [1]. Similar to TDD, EATDD
asks for requirements as a set of acceptance tests that can test for functional software
requirements. What is distinct about this process is that requirements are specified in
executable acceptance testing form by the customer instead of in a natural language.
The specification must be writable and readable by customers and the development
team members. The practice became particularly popular in the Agile development
community, especially with the introduction of Cunningham’s testing framework called
Fit [7] and their subsequent add-ons such as Fitlibrary[8] and Fitnesse [9]. Similar test-
ing frameworks are also becoming available in the market, e.g. Greenpepper [10]

Melnik et al. conducted a study on how students perceived and used Fit testing
framework for specifying software requirements [11]. Their result shows that despite
the students’ objection to writing the executable acceptance tests in the beginning, all
of the students were able to convey the functional requirements completely. At the
end of the course, 80% of the students said they didn’t want to specify all of the re-
quirements in prose and would prefer a tool like Fit. Read et al. found that about 2/3
of the students said they will use Fit for acceptance tests in the future [12]. Sauvé et
al. also corroborated the finding that students were able to improve their communica-
tion through their custom testing tool called EasyAccept [13].

www.manaraa.com

 Communicating Domain Knowledge 25

Melnik et al. also conducted a study with industry practitioners. They found that
customers and testers “recognized the effectiveness of the executable acceptance test-
driven development for specifying and communicating functional business require-
ments”, but the developers preferred unit tests over Fit tests. Ricca et al. found that Fit
tables can help clarify a set of change requirements in the software with improved
correctness with no significant impact on time. However, they found that the benefits
of Fit vary by developers’ experience [14].

While these studies suggest that executable acceptance tests can improve commu-
nication about functional software requirements, the empirical basis is still limited.
The existing research work still doesn’t explain why some people are very enthusias-
tic about it and some are very hesitant. We also need to find out how executable ac-
ceptance tests should be specified and what additional purpose these tests serve.

3 Research Approach

In this section, we describe our research methodology and our research design. Hu-
man factors are difficult to measure because it is impossible to measure the software
engineering process independently of the practitioners. When we investigate a real-
life software development project, we can’t always measure, control or identify all of
the factors that influence the development process [15]. Therefore, to facilitate our
qualitative research in such settings, we decided to leverage a case study research
strategy, which is a set of research procedures that are designed to facilitate research
where researchers are interested in “how” and “why” of the phenomena under study
but has very little control over the behavioral events. The purpose of using a case
study method is to deliberately uncover the contextual conditions that led to the phe-
nomenon “believing that they might be highly pertinent to [the] phenomenon” under
study. In a software engineering context, Fenton et al. [16] label case studies as “re-
search into the typical”. Case studies can help discover the relationship between hu-
mans and the environmental context.

The goal of the case study research strategy is to contribute a hypothesis about the
phenomenon under study mainly through analytical generalization rather than statis-
tical generalization [17]. It means that although we cannot make any definite conclu-
sion based on one case study, a single case study can provide very rich insights into
the problem under study, especially when the evidence is consistent with previously
existing research work.

Our case study is done at CGI [6]. While we were collaborating with CGI for an ex-
tended period of time [18], the fieldwork for the current study was done over two addi-
tional days during which we conducted in depth interviews with members of the CGI
team. Our results are based on newly collected data as well as insights from previous
collaboration. The new data represents over four years of development practice. We
interviewed three additional software developers and one project manager for detailed
data collection. In addition, we interacted with five additional software developers to
corroborate our findings. We did not record the interviews, because recording the in-
terviews was seen as to be too intrusive in the company environment. However, any
interesting remarks made by the developers were carefully written down during the
interviews along with any observation we made. The length of the interview varied

www.manaraa.com

26 S. Park and F. Maurer

greatly depending on how much information the developers were providing for our
research. We also participated in one daily scrum meeting and observed three other
daily scrum meetings. Our empirical data also includes direct observation of a devel-
oper who was engaged in a debugging process of a failing executable acceptance test,
which lasted about one hour. We wanted to understand how acceptance tests were used
to fix the failing code.

Our analysis of the collected data involved open coding and code categorization
using our field notes [19]. During open coding, we identified a set of codes that could
provide most insights into the data from our field notes. Then we categorized the
codes to determine the relationships among the identified codes and a list of themes
was generated.

4 The PAS Project

A case study assumes that contextual condition is important in the phenomenon under
study. Therefore, in this section, we are going to briefly describe the PAS develop-
ment project. PAS is production accounting software for the petroleum industry. The
purpose of oil and gas production accounting software is to keep track of oil and gas
production and calculate various capital interests invested in the oil and gas wells.
CGI already had an existing production accounting software called CGI Triangle, but
the system needed to be rewritten due to the obsolescence of technologies used for its
development.

The CGI PAS project was sponsored by four of the largest oil and gas companies
in Canada. An oil and gas production accounting system is an extremely critical soft-
ware system for oil and gas exploration companies, because engineers and production
accountants not only have to keep track of their oil and gas productions, but they need
to be able to calculate tax and various interests1 being represented in their oil and gas
wells. Because each country and province has their own unique set of regulations on
tax and interest calculations, it is important for the oil and gas companies to use soft-
ware that reflects the regulations for the political jurisdiction where the well exists.
The amount of engineering and accounting knowledge involved in the petroleum in-
dustry in order to build PAS is so complex that it is absolutely impossible to build the
software without having someone with the expertise who can lay out the information
properly to the software developers. While all software development requires business
domain experts, the problem with PAS is that production accountants need years of
training before they understand the domain. The knowledge is not easy to be picked
up by developers on the side. The team also needs someone who can keep track of the
changing set of government regulations in the oil and gas industry.

The number of software developers in PAS project fluctuated over the last four
years of its development; therefore, the amount of knowledge about the project devel-
opment within the team fluctuated. At the time of the fieldwork, PAS is already de-
ployed and operational in the client’s work environment. Our contacts in the company
told us that there are about 80 software developers, testers and clerks at the time of the
fieldwork. For an Agile development team, it is quite a large team. The team is split
up into several subteams (one for each major component).

1 Interest: how costs and revenues are shared by stakeholders.

www.manaraa.com

 Communicating Domain Knowledge 27

The development area is a large open space. Each subteam had, what they called, a
SPOC (Single point of contact) and an SME (subject matter expert). A SPOC com-
municates the progress of the team and addresses any concerns that other teams might
have on the component they are building. The SME is the person who has the domain
expertise to define the requirements, answer any domain-related questions from the
developers and test the end products to ensure that the requirements were correctly
understood and implemented by the developers.

Each subteam had 2 to 8 developers and they stay as a team only for the duration
of building the specific business component. Each team holds a daily scrum meeting
in the morning. Due to the size of the team, each team had separate scrum meetings
and each team sent a team representative to inter-team daily scrum meetings. In addi-
tion, they kept track of bug lists using Jira [20]. There were 927 ‘GUI Smoketests’
that test the user interface layer, 93 report regression tests and numerous unit tests and
other types of tests that we did not look into carefully for this research.

5 Observation

In this section, we present our observations by describing CGI’s executable accep-
tance test-driven development process. We first describe our observation and then we
summarize the implications of our findings.

5.1 Choose the Requirements Specification Tool from the Customer’s Domain

The requirements specification is defined using the language and formats of the busi-
ness domain. This can reduce the extra overhead of learning the specification tool by
the domain experts (customer representatives). Our case study shows that the domain
experts chose Microsoft Excel as their requirements specification tool, which is a stan-
dard tool for communicating production accounting data in the oil and gas industry.
The standards for the data formatting are regulated by the provincial energy regulatory
boards [21] and production accountants generally use Microsoft Excel to facilitate their
business communication. Although production accountants are not required to use Mi-
crosoft Excel, it is a common practice to do so in the oil and gas industry.

Microsoft Excel became a preferred tool for requirements specification, because
Excel was familiar to the domain experts. Excel has features such as VB macro pro-
gramming and pivot tables. The domain experts understood and used these Microsoft
Excel features proficiently. An acceptance test file has 12 macros, which are used to
create these table templates and help with the test automation process.

One Excel file contained many requirements and the developers considered one
Excel file as one acceptance test. Each acceptance test is composed of many calcula-
tion worksheets, which are represented using Excel worksheets. Each worksheet can
contain 20 to 650 rows of test data and about 3 to 30 columns. Each row can return
more than one expected output result.

There are a total of 17 business components in the PAS project. Each business
component had multiple acceptance tests and each acceptance tests had multiple
worksheets (or the developers called them ‘views’). There are a total of 321 accep-
tance tests for the PAS project. The domain experts were able to write and maintain
these tests whenever a feature is added or changed in the software.

www.manaraa.com

28 S. Park and F. Maurer

The use of Excel was motivated by the ease of transferring and codifying the do-
main knowledge via this medium by the domain experts, especially because Excel is
the conventional tool in the business domain. It is easier to codify tacit knowledge to
explicit knowledge if the tool is already utilized to facilitate communication in the
customer’s domain. In addition, (1) domain experts who are familiar with the specifi-
cation tool are more likely to create and maintain acceptance tests for the developers
and (2) the tool can communicate the domain knowledge best because it can represent
the domain data appropriately. What makes Microsoft Excel interesting is that this
tool is universally well known and easy to learn by both the customers and develop-
ers. Finding a common tool that can be used and understood by business experts as
well as the development team is a crucial and important condition for a successful
EATDD process. Excel not only allowed the production accountants to leverage their
existing computer skills for writing the requirements, but it also provided the contents
in a form that developers can easily turn into acceptance tests.

5.2 Communicating the Business Domain Knowledge

In this section, we are going to analyze the kind of knowledge their acceptance tests
are conveying to the developers. Due to the page limitation, Table 1 shows only a
very small snapshot of a large executable acceptance test that has 644 rows and 14
columns, which is a typical example set of scenarios required to test for real-life pro-
duction accounting. Table 1 is testing for a contract allocation. The last three columns
show the sum of the expected share of the energy for everyone who has a stake in the
reserves profit. We found that most of the tests are transaction style calculations.
Generally the tests identify where (a physical entity such as reserves or a facility),
who the transaction is for, what values should be assigned and optionally when the
transaction occurs. The format is typical of any production accounting spreadsheets.
The test data is created by the domain experts using similar production data, but the
data is so realistic that it could be the real production accounting data.

Table 1. An Example Snapshot of Executable Acceptance Test Definition

Fac ID Cont
Name

CParty
Name

Prod
Code

Cont
Type

Settle-
ment

Sum
of
VOL

Sum
of
PRICE

Sum
of VAL

Cash 2.76 339.98 938.37 FH roy-
alty C5

Farmer
Cassie

C5-SP Royalty
Cash 2.76 339.98 938.37
TIK 2.2 235.69 518.51

1000405
00722W
500 FH TIK

on gas –
100%

Kathy
and Co.

GAS Royalty
TIK 2.2 235.69 518.51

The domain experts also provided workflow diagrams that are not executable, but

they complement the executable specification. They were designed to inform the
developers about the business workflow for the acceptance test. Figure 1 shows a

www.manaraa.com

 Communicating Domain Knowledge 29

Fig. 1. A diagram explaining the business process involved in a battery facility

workflow diagram of a battery facility2. Our analysis shows that the domain experts
need to provide two types of documents: testable requirements specifications and an
overview document to put the specification into context. The overview document can
be used by the developers to point at something to ask for more information about the
domain.

5.3 Making the Requirements Specification Executable

The testing framework is based on Excel, Ruby and JUnit. Ruby is used to automate
the user interface layer. JUnit is used to execute the script file and to compare the test
output values. Executing one acceptance test can take up to 1 hour or more, because it
simulates real-life production data and calculations and it runs against the UI layer. A
production data file contains months or even years of production data. The largest
Excel file is about 32 megabytes in size.

Figure 2 shows a time-series analysis graph of percentages of succeeding accep-
tance tests captured at the end of each sprint. Notice that over time, the developers
became much more conscience about passing the acceptance tests. But we cannot
make a definite conclusion about the quality of the software from the graph.

We wanted to get better understanding whether the graph reflected the amount of
domain knowledge that was transferred to the developers. We asked the developers to
explain specific parts of the acceptance test that were failing. They explained it in
terms of how they can fix the problem technically, but they could not explain the do-
main knowledge behind these tests by putting it into context of the industry. However,
they knew enough to explain why the test would fail. Based on our interview data, we
can assume that the team’s understanding of the business domain is fragmented across
many developers. It also meant the executable acceptance tests provide enough infor-
mation for the developers to implement the code even if they have limited understand-
ing about the domain in which it will be used. The regression tests using executable

2 Battery facility: a plant where raw petroleum is separated into different types of hydrocarbons.

www.manaraa.com

30 S. Park and F. Maurer

Scenario Stats
Successful Percentage Rate

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

6/
1/

20
07

6/
15

/2
00

7

6/
29

/2
00

7

7/
13

/2
00

7

7/
27

/2
00

7

8/
10

/2
00

7

8/
24

/2
00

7

9/
7/

20
07

9/
21

/2
00

7

10
/5

/2
00

7

10
/1

9/
20

07

11
/2

/2
00

7

11
/1

6/
20

07

11
/3

0/
20

07

12
/1

4/
20

07

12
/2

8/
20

07

1/
11

/2
00

8

1/
25

/2
00

8

2/
8/

20
08

2/
22

/2
00

8

3/
7/

20
08

3/
21

/2
00

8

4/
4/

20
08

4/
18

/2
00

8

5/
2/

20
08

5/
16

/2
00

8

5/
30

/2
00

8

6/
13

/2
00

8

Fig. 2. A time-series graph showing the percentage of acceptance tests succeeding at the end of
each sprint. 0% success rate was due to a test automation problem at the time rather than any
serious software malfunction.

acceptance tests were important because they highlighted this knowledge gap among
the developers. It made the knowledge gap transparent to everyone. Therefore, they
knew who and when to seek out help when these tests failed. Unlike unit tests, failure
in executable acceptance tests meant they misunderstood domain knowledge, thus it
signaled possible problems in delivering business value to the customer.

They did not need in-depth production accounting training to fix the software prob-
lem, because executable acceptance tests usually gave enough information to identify
the problematic code and also provided the expected answer. However, a more in-
depth empirical study is required to understand the developer’s cognitive processes
involved in going from failing executable acceptance tests to fixing the code.

6 Discussion

We categorize our findings into three categories: communication, medium and con-
text. We discovered that the purpose of having executable acceptance tests is to com-
municate the domain knowledge to the software developers. The acceptance tests
were a feedback system for the developers to confirm their understanding about the
requirements and the business domain. Previous research also validates our finding
[23, 24]. More than any other types of development artifacts, executable acceptance
tests are utilized to fill the knowledge gap between the domain experts and the soft-
ware developers. The failing tests from the automated regression tests are a good
starting point for developers to question their understanding about the domain. With-
out such feedback system, the developers would not know how to validate their
understanding about the requirements. However, no one previously looked at how
specific types of domain knowledge are written in executable acceptance tests.

The medium used for acceptance test specification is important for successful
EATDD process. Previous papers found that tools are important [24]. However, we
discovered that tools are important for the domain experts more than the developers.
The team discovered that production accounting knowledge is very well organized
using Microsoft Excel. We hypothesize that Microsoft Excel made the test specifica-
tion easier for the domain experts. By giving more power to the domain experts, the

www.manaraa.com

 Communicating Domain Knowledge 31

developers were able to gain valuable acceptance tests that became critical artifacts
for their success. We believe that directly utilizing the language and formalism of the
business domain (instead of development oriented languages and formalisms) will
improve communication between the business side and the development side of a
software project.

We also discovered that the context is also important. First, we discovered that the
acceptance tests not only provided testable example data, but we also need to provide
overview documentation about the domain knowledge and business workflow dia-
grams. The extra information helped communicate the necessary domain knowledge
needed to understand the acceptance test specifications.

7 Threats to Validity

For external validity, we believe our case study can be generalized to very large soft-
ware development projects where the software developers do not have complete under-
standing of the domain knowledge. However, our case study only supports transactional
style domain data. For threats to internal validity, the observation was collected and
analyzed mainly by the first author, which may have introduced some unintended bias.
Our interview data also mostly reflect the perspectives of the developers. To ensure
construct validity, we performed a detailed inspection of the tool and the requirements.
We are confident about our findings, because our observation and test data represents
over four years of development practice.

8 Conclusion

Our case study suggests that a successful software development process is one that
allows the developers to quickly verify and validate their understanding about the
domain knowledge as well as the software requirements. However, in order to do so,
the software developers require a reason to believe that their domain understanding
needs further inquiry. An automated feedback system, especially using executable
acceptance tests, allows the developers to ask the right question to fulfill their task.

References

1. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley, Reading
(1999)

2. Jeffries, R.: What is XP?,
 http://xprogramming.com/xpmag/acsFirstAcceptanceTest.htm

3. Fowler, M.: Specification by Example
4. http://www.martinfowler.com/bliki/SpecificationByExample.html
5. Kaner, C.: Cem Kaner on Scenario Testing: The Power of ‘What-If’ and Nine Ways to

Fuel Your Imagination. Better Software 5(5), 16–22 (2003)
6. Evans, E.: Domain-Driven Design: Tackling Complexity in the Heart of Software. Addi-

son-Wesley, Reading (2003)
7. CGI, http://www.cgi.com

www.manaraa.com

32 S. Park and F. Maurer

8. Fit, http://fit.c2.com
9. FitLibrary, http://sourceforge.net/projects/fitlibrary

10. Fitnesse, http://fitnesse.org
11. Greenpepper, http://www.greenpeppersoftware.com/
12. Melnik, G., Maurer, F.: The Practice of Specifying Requirements Using Executable Ac-

ceptance Tests in Computer Science Courses. In: Proc. of 20th OOPSLA 2005, San Diego,
USA, October 16-20, 2008 (2005)

13. Read, K., Melnik, G., Maurer, F.: Student Experiences with Executable Acceptance Test-
ing. In: Proc. of Agile Conference 2005, July 24-29, pp. 312–317. IEEE Press, Los Alami-
tos (2005)

14. Sauvé, J.P., Neto, O.L.: Teaching software development with ATDD and EasyAccept. In:
Proc. of SIGCSE tech. symp. on CPSC Education, Portland, USA, pp. 542–546 (2008)

15. Ricca, F., Penta, M., Torchiano, M., Tonella, P., Ceccato, M., Visaggio, C.: Are Fit tables
really talking?: A series of experiments to understand whether fit tables are useful during
evolution tasks. In: Proc. of the 30th ICSE 2008, Leipzig, Germany, pp. 361–370 (2008)

16. Juristo, N., Moreno, A.: Basics of Software Engineering Experimentation. Kluwer Aca-
demic Publishers, Dordrecht (2001)

17. Fenton, N., Pfleeger, S.: Software Metrics: A rigorous and practical approach, 2nd edn.
PWS Publishing Company (1996)

18. Yin, R.: Case Study Research: Design and Metrics. Sage Publications, Thousand Oaks
(2003)

19. Grewal, H., Maurer, F.: Scaling Agile Methodologies for Developing a Production Ac-
counting System for the Oil & Gas Industry. In: Proc. of Agile (2007)

20. Strauss, A., Corbin, J.: Basics of Qualitative Research: Techniques and Procedures for De-
veloping Grounded Theory. Sage Publications, Thousand Oaks (1998)

21. Jira, http://www.jira.com/
22. Energy Resources Conservation Board, http://www.ercb.ca/
23. Melnik, G.: Empirical Analysis of Executable Acceptance Test Driven Development, Ph.D

Thesis, University of Calgary, Department of Computer Science (August 2007)
24. Melnik, G., Maurer, F., Chiasson, M.: Executable acceptance tests for communicating

business requirements: customer perspective. In: Agile 2006, Minneapolis, MN (2006)

www.manaraa.com

An Empirical Study on the TDD Conformance

of Novice and Expert Pair Programmers

Andreas Höfer1 and Marc Philipp2

1 Universität Karlsruhe (TH), IPD Institute
Am Fasanengarten 5, D-76131 Karlsruhe, Germany

Tel.: +49 721 608-7344
ahoefer@ipd.uni-karlsruhe.de

2 andrena objects ag
Albert-Nestler-Straße 11, D-76131 Karlsruhe, Germany

Tel.: +49 721 6105-126
marc.philipp@andrena.de

Abstract. We conducted a quasi-experiment comparing the confor-
mance to the test-driven development (TDD) process of one expert and
two novice groups of programmers working in pairs. Besides an insignif-
icant tendency of the expert group toward a higher TDD conformance
and instruction coverage, we found that the expert group had refactored
their code to a larger extent than the two novice groups. More surpris-
ingly though, the pairs in the expert group were significantly slower than
the pairs in one of the novice groups.

Keywords: test-driven development, pair programming, experts and
novices, quasi-experiment.

1 Introduction

Test-driven development (TDD) and pair programming (PP) are agile techniques
commonly used in conjunction. Among pair programmers applying TDD in the
field we find the whole spectrum in expertise ranging from novices, who have
just begun to explore these techniques, to experts, who have been using them
for several years in industry. It seems apparent that the level of expertise has an
influence on how a programmer pair implements the TDD process and therefore
also on the results the pair can achieve. Yet, the actual effects are not easily
predictable. Therefore, we conducted a quasi-experiment comparing the TDD
processes of one expert and two novice groups of programmers working in pairs.
This quasi-experiment yielded rather surprising results which we present in this
article.

2 Related Work

In recent years, several studies have been published which compared TDD to
other development processes using students as subjects. Müller and Hagner [1]

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 33–42, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.manaraa.com

34 A. Höfer and M. Philipp

for example, compared TDD to a traditional test-last approach. They found no
evidence for differences concerning problem solving time and program reliability
but the test-first group made fewer errors when reusing existing methods. Erdog-
mus et al. [2] conducted an empirical study with computer science students. The
test-first programmers wrote more tests per unit of effort but there was no differ-
ence between the two groups concerning code quality and productivity. Pančur
et al. [3] conducted another study with students. They could not provide evi-
dence for differences between TDD and the test-last development process used.
Edwards [4] adopted TDD in a computer science course. His students reduced
their defect rate dramatically after adopting TDD and were more confident in
the correctness of their programs. Similarly, Kaufmann and Janzen [5] conducted
a small pilot study in an advanced project-oriented software engineering course.
Their results support the claim that TDD helps to improve both software quality
and programmer confidence.

Other studies compared TDD to other processes using professional developers
as subjects. Geras et al. [6] studied the differences between test-first and test-last
concerning the amount of unplanned failures. Due to the small number of partic-
ipating professional programmers the results of this study remain inconclusive.
Canfora et al. [7] performed a controlled experiment with professional developers
comparing TDD to a test-last approach. They report statistical evidence that
TDD is more time-consuming but does not produce more assertions in the test
code. George and Williams [8] compared TDD to a waterfall-like development
process in a controlled experiment. The professional developers in their exper-
iment worked in pairs. The programs of the pairs in the TDD group passed
more test cases of a black-box test than the ones of the pairs in the control
group. Yet, the TDD pairs also needed more time for development. A moderate
but statistically significant correlation between the development time and the
resulting code quality was found. Maximilien et al. [9] transitioned a software
development team from an ad-hoc to a test-driven unit testing practice at IBM.
While the transition to TDD had only a minimal impact on the productivity
of the developers, the defect density of the project developed using TDD was
reduced by 40 percent compared to a baseline project developed in a traditional
fashion. Two case studies carried out at divisions inside Microsoft were reported
by Bhat and Nagappan [10]. In each of the two divisions two teams worked on
similar projects, one team using TDD and the other without using TDD. In both
cases, the TDD group needed more time but the quality of the resulting software
measured in terms of defects per LOC was at least two times better compared
to similar non-TDD projects.

Research on the effectiveness of PP has produced significant results as summa-
rized in a meta-study by Dyb̊a et al. [11]. They analyzed the results of 15 studies
comparing pair and solo programming and conclude that quality and duration fa-
vor PP while effort favors solo programming. Apart from the effectiveness of PP,
other studies have taken an experimental approach to identify programmer char-
acteristics critical to pair success. Domino et al. [12] examined the importance

www.manaraa.com

On the TDD Conformance of Novice and Expert Pair Programmers 35

of the cognitive ability and conflict handling style. The performance of a pair was
neither correlated with its cognitive ability nor its conflict handling style. Chao
and Atli [13] first surveyed professional programmers to identify the personality
traits perceived as important for PP. They then conducted an experiment with
undergraduate students to identify the crucial personality traits for pair success
that yielded no statistically significant results. Katira et al. [14] examined the
compatibility of student pair programmers and found a positive correlation be-
tween the students’ perception of their partner’s skill level and the compatibility
of the partners. Sfetsos et al. [15] compared the performance of student pairs
with different Keirsey temperaments to student pairs with the same Keirsey tem-
perament. The pairs with different temperaments performed better with respect
to the total time needed for task completion and points earned for the tasks.
The pairs with different temperaments also communicated more than the pairs
with the same temperament.

3 Data Collection

We collected data from a total of 23 programmer pairs, nine in the novice ’06
group, seven in the novice ’08 group and seven in the expert group. Unfortu-
nately, we had to remove the data points of five pairs from the data set: One
data point in each group was dropped because the pairs did not manage to de-
velop a solution which passed our automated acceptance test. Two more data
points from the novice ’06 group had to be excluded from the data set because
their data was irreparably damaged due to technical problems with the Eclipse-
plugins responsible for data collection. Hence, the following information refers
to the participants whose data points are included in the data set.

3.1 Participants

The participants in the novice ’06 and ’08 group were students, who had partic-
ipated in our extreme programming lab courses in 2006 and 2008, respectively.
In the lab course, they learned the basic principles of extreme programming and
applied them in a project week. Participation in the study was mandatory in
order to obtain the course credits. The average member of the novice ’06 group
was in the 6.5th semester, had 4.8 years of programming experience, including
2.0 years experience with Java. Five members of the novice ’06 group reported
prior experience with PP, one had used JUnit before the lab course, and none
had previously tried TDD.

In the mean, the members of the novice ’08 were in the 7.7th semester, had 6.4
years of programming experience, including 4.0 years experience with Java. In
the novice ’08 group, three participants reported prior experience with PP. Three
participants had used JUnit and three had tried TDD before the lab course. In
both novice groups, industrial programming experience was sparse.

The members of the expert group were professional software developers
from German IT companies, 11 from a company specialized in agile software

www.manaraa.com

36 A. Höfer and M. Philipp

development and consulting. One expert took part in his spare time and was
remunerated by the experimenter, the others participated during normal work-
ing hours, and so all experts were compensated. All experts hold a diploma in
Computer Science or in Business Informatics. On average, they had 7.8 years
of programming experience in industrial projects including on average 5.5 years
experience with PP, 3.0 years experience with TDD, 5.5 years experience with
JUnit, and 7.2 years experience with Java.

3.2 Realization

For the assignment of the pairs in the novice groups the experimenter asked each
novice for three favorite partners within their group and then assigned the pairs
according to these preferences. Only one pair in each novice group could not be
matched based on their preferences. In the expert group the pairs were formed
based on their preferences and time schedule.

The task of the pairs was to complete the control program of an elevator
system written in Java using TDD. The pairs received a program skeleton which
contained the implementation of three out of four states. This skeleton comprises
ten application and seven test classes with 388 and 602 non-commented lines of
code, respectively. The set of unit tests provided with the program skeleton use
a mock object [16] to decouple the control of the elevator logic from the logic
that administrates the incoming jobs and requests. However, the mock object
implementation in the skeleton does not provide enough functionality to develop
the whole elevator control. Other functionality has to be added to the mock
object to test all desired features of the elevator control. Thus, the number of
lines of test code may be higher than the number of lines of application code.
The mock object also contributes to the line count.

The pairs had to solve the task in a single programming session. All novice
pairs and one expert pair worked in an office within the Computer Science de-
partment. For the other expert pairs an equivalent workplace was set up in a
conference room situated in their company.

Because we were also interested in collecting data on the pairs’ interaction all
pairs worked on a workplace equipped with two cameras and a computer with
screen capture software installed. There was an implicit time limit due to the
cameras’ recording capacity of seven hours. Additionally, the task description
states that the task can be completed in approximately four to five hours. Each
participant recorded interrupts such as going to the bathroom or lunch breaks.
The time logs were compared to the video recordings to ensure consistency.

The pairs had to work on the problem until they were convinced they had
developed an error free solution, which would pass an automated acceptance
test, ideally at first attempt. If the acceptance test failed, the pair was asked to
correct the errors and to retry as soon as they were sure that the errors were
fixed. As mentioned before, one pair in each group did not pass the acceptance
test after more than six hours of work and gave up.

www.manaraa.com

On the TDD Conformance of Novice and Expert Pair Programmers 37

4 Analysis and Results

The research hypothesis at the start of our data analysis was that the results of
the expert group differ from the results of each novice group in terms of confor-
mance to the TDD process and time needed for implementation. A comparison
of the pre-test data of the two novice groups using a two-sided Wilcoxon test
[17, pp. 106] revealed significant differences in two areas. The participants in
the novice ’08 group had studied longer (p =0.014) and had more programming
experience with Java (p = 0.018) than the participants in the novice ’06 group.
Therefore, we assumed that not only the expert group differs from both novice
groups but that there could also be differences between the two novice groups.

To test this hypothesis for each metric, we applied a two step approach: As
the sample size was small, we used a Kruskal-Wallis test [17, pp. 191] to test
the null-hypothesis that all groups are equal against the alternative that at
least two of the groups differ from each other. For the case that the Kruskal-
Wallis test yielded a significant result, we used two-tailed Wilcoxon tests and
Bonferroni-Holm correction [18] of the p-values to conduct the three possible
pairwise comparisons of the groups. The significance level for all tests was set
to 5 percent. Note that due to the small sample sizes the power of our study is
restricted. We estimated the power of our tests on the basis of the power of the
t-Test at a significance level of 5 percent and a large effect size of 0.8. Even if we
do not use the rather pessimistic asymptotic relative efficiency (ARE) of 0.864
[17, pp. 139] but the more optimistic ARE value of 0.955 for normal distributions,
the power of our study remains under 20 percent. That means that we have an
about 80 percent chance of not detecting existing effects.

4.1 TDD Conformance

First of all, we examined the TDD conformance of the pairs. To obtain this
measure, we used an advanced version of our TDD analysis framework first
presented in [19]. Our framework consists of several Eclipse-plugins for data
collection and a standalone analysis tool. The Eclipse-plugins register JUnit
invocations, automated refactorings and frequently make copies of all changed
Java files. The analysis tool uses the data collected by the Eclipse-plugins and
extracts all changes made to application code methods and classifies them as
test-driven, refactoring, or arbitrary. A change is classified as test-driven if it
fulfills one of the following rules:

Rule 1: The change is contained in a method which was called by a failing test
in the latest JUnit invocation before the point in time of the change.

Rule 2: The change is contained in a new method which is called by a failing
test in the JUnit invocation immediately after the point in time of
the change.

A change is classified as refactoring if it belongs to an automated1 or a manual
refactoring. The detection of test-driven changes and changes from automated
1 As offered in Eclipse’s Refactor menu.

www.manaraa.com

38 A. Höfer and M. Philipp

●

T
D

D
 C

on
fo

rm
an

ce
 [

%
]

Exp. N'06 N'08

30
50

70
90

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

Fig. 1. Conformance to
the TDD process

D
ur

at
io

n
[m

in
]

Exp. N'06 N'08

10
0

15
0

20
0

25
0

30
0

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

● ●

●

Fig. 2. Time needed for
implementation

●

C
ov

er
ag

e
[%

]

Exp. N'06 N'08

86
88

90
92

94
96

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

Fig. 3. Instruction cover-
age

refactoring works fully automatic. However, our analysis tool cannot detect man-
ual refactorings automatically. Therefore, a human reviewer has to decide for all
changes which could not be classified automatically whether they are refactorings
or arbitrary changes, i. e. changes non-conformant to the TDD process. As the
manual classification process is a potential source for errors, the analysis tool
supports multiple reviewers and the reconciliation of reviews. For this study,
we independently reviewed the changes and then reconciled the few conflicting
decisions. Next, we computed the TDD conformance as follows:

TDD Conformance =
Test-Driven Changes + Refactorings

All Changes
(1)

Fig. 1 shows the TDD conformance of the three groups as boxplots (grey) with
the data points (black) as overlay. At first glance the TDD conformance in the
expert group seems to be higher than in the two novice groups. However, the
corresponding Kruskal-Wallis test returns a p-value of 0.203. Consequently, we
cannot reject the null-hypothesis that all groups are equal.

4.2 Time

Next, we compared the time needed for implementation. It is defined as the time
span from handing out the task description to the final acceptance test minus the
time for the initial reading phase, breaks, and the acceptance tests. Fig. 2 depicts
the time needed for implementation of all groups. Judging from the boxplots the
expert pairs appear to be slower than the pairs in both novice groups. The results
of the corresponding hypothesis tests as summarized in Table 1 confirm that
the visible difference between the expert and the novice ’08 group is significant.
However, the differences between the expert and the novice ’06 group, as well as
between the two novice groups are not significant. The fact that the experts were
slower than one of the novice groups was quite surprising, as we had assumed
that the expert pairs would be faster than the pairs in the two novice groups.

www.manaraa.com

On the TDD Conformance of Novice and Expert Pair Programmers 39

4.3 Coverage

To assess if the expert pairs had invested the extra time in the quality of the unit
tests, we used EclEmma to measure the instruction coverage, i. e. the percentage
of instructions executed in a test run. Fig. 3 shows instruction coverage values of
the final versions of the pairs’ programs. The dashed line indicates the instruction
coverage of the program skeleton originally handed out to all pairs. Though there
seems to be a slight advantage for the expert group, the visible difference is too
small to become significant (cf. Table 1).

4.4 Changes

In search of an explanation where the experts had spent their time we counted
the number of lines that had changed from the initial to the final version of their
program. Before counting the lines with the Unix diff-command, we standardized
the formatting of all Java files with Jalopy and removed the import statements.
Thus simple re-ordering of methods, changes made to white-space characters
and import statements, as well as changes in comments had no effect on the
number of changed lines. Fig. 4 depicts the results of this analysis. It appears as
if the expert pairs had altered the code to a much larger extent than the pairs
in both novice groups. However, according to the results from hypothesis testing
as presented in Table 1 only the expert and novice ’08 group differ significantly.

Remember, the difference in time consumption was also significant for the
expert and the novice ’08 group. So the fact that the expert pairs changed more
lines of code than the pairs in the novice ’08 group might be an explanation for
the higher time consumption. Still, the question what led to more changes in the
expert group needs to be answered.

Therefore, we take a more detailed look at the results we got from our analysis
of the TDD processes: When we compare the percentage of changes that were
classified as refactorings, we see that the expert pairs refactored significantly
more than the pairs in both novice groups, whereas the difference between the
novice groups is insignificant. A comparison of the number of automated refac-
torings used by each pair completes the picture (see Fig. 5). The expert pairs
made significantly more use of Eclipse’s refactoring capabilities than the pairs
in the novice ’06 and ’08 group.

4.5 Threats to Validity

Apart from the different TDD and PP experience of the experts and novices
other possible explanations for the observed differences in the data set might
exist. First of all, the novices did not only have less experience with TDD and
PP but also less general programming experience than the experts.

Secondly, the behavior of the participants might have differed from their ac-
tual development style since the participants knew that they were monitored by
our Eclipse-plugins and cameras. In the post-test questionnaire2, we asked the
2 One expert pair had to leave before answering the post-test questionnaire.

www.manaraa.com

40 A. Höfer and M. Philipp

●

C
ha

ng
es

 [
SL

O
C

]

Exp. N'06 N'08

10
0

20
0

30
0 ●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

Fig. 4. Net number of
changes

●

●N
um

be
r

of
 R

ef
ac

to
ri

ng
s

Exp. N'06 N'08

0
5

10
15

20
25

●

●

●
●

●

●

●
●

● ●●●●

●
●

●●●

Fig. 5. Number of auto-
mated refactorings

Table 1. All p-values, underlined values are significant

Metric Kruskal-Wallis Wilcoxon (Bonferroni-Holm corrected)

All Groups Experts &
Novices ’06

Experts &
Novices ’08

Novices ’06 &
Novices ’08

TDD Conformance 0.203 - - -
Time 0.039 0.130 0.045 0.937
Instr. Coverage 0.232 - - -
Changed Lines 0.049 0.217 0.045 0.699
Auto. Refactorings 0.003 0.018 0.014 0.527
Refactoring 0.006 0.019 0.03 0.24

participants to rate the statement “I felt disturbed and observed by the cam-
eras” on a Likert scale from 1 (totally disagree) to 5 (totally agree). About 65
percent of the participants rated this statement with totally or rather disagree.

Another threat to validity concerns the participants’ motivation. The fact
that experts were paid for their participation and novices were not might have
led to a bias here. To check the participants’ motivation, we asked them to rate
the statement “I enjoyed programming in the experiment” on the same Likert
scale mentioned before. Most participants (68 percent) totally or rather agreed
with this statement.

Moreover, the participants’ motivation might have been influenced by how well
the partners got along with each other. We asked them to rate the statement
“I would work with my partner again”. The participants’ agreement with this
statement was even higher: About 82 percent rated it with totally or rather
agree. We tested all of the groups’ ratings on each statement for differences
using a Kruskal-Wallis test. None of the results was significant.

Furthermore, the task was used in other studies before so some participants
might have known the task. Consequently, we asked the participants if they
already knew the task before they started. All participants replied with no.

Finally, some of the changes were classified manually. Manual classification
might introduce bias into the data set. However, as mentioned in Section 4.1,

www.manaraa.com

On the TDD Conformance of Novice and Expert Pair Programmers 41

both authors did the classification independently. Later on, the two reviews were
reconciled. Only 3.8 percent of the changes were classified differently. Most of
them were borderline cases where both classifications would have been applica-
ble. Those differences could be resolved easily.

5 Conclusion

This article presented an analysis of the TDD conformance of 18 programmer
pairs. First of all, we could neither provide evidence for a higher TDD confor-
mance of the expert group compared to the novice groups nor for a better quality
of the unit tests in terms of coverage. But since the sample sizes were small, this
might be due to the low power of our study.

The most surprising result, nevertheless, is that the expert group was slower
than one of the novice groups. However, the pairs in the same novice group had
modified the given program skeleton less than the pairs in the expert group.
Though not significant, the trend for the comparison of the expert and the
other novice group pointed into the same direction. We could demonstrate that
the plus in changed lines resulted from a higher fraction of refactorings in the
TDD processes of the expert pairs. Additionally, they had applied more of the
automated refactorings offered by Eclipse.

The results of this study have two implications: The first one is that studies
with novices on the topics of TDD and PP are not easily generalizable to indus-
trial settings. The second one concerns the low power of our study. Although it
may be very tempting to use one-tailed hypothesis testing procedures to increase
the power, they should be used with care. The direction of the difference is not
necessarily the one predicted even if the underlying assumption seemed plausible
when formulating the research hypothesis.

Experiments with sufficient power such as the study by Arisholm et al. [20]
are rare in the research area of agile development. One way to overcome this
problem is to collect data from several studies for meta-analysis. Yet, a better
way, at least in our opinion, would be for different empirical research groups to
join forces and set up larger experiments with potentially more valuable results.

References

1. Müller, M.M., Hagner, O.: Experiment about test-first programming. In: IEE Pro-
ceedings – Software, vol. 149, pp. 131–136 (October 2002)

2. Erdogmus, H., Morisio, M., Torchiano, M.: On the Effectiveness of the Test-First
Approach to Programming. IEEE Transactions on Software Engineering 31(3),
226–237 (2005)

3. Pančur, M., Ciglarič, M., Trampuš, M., Vidmar, T.: Towards Empirical Evaluation
of Test-Driven Development in a University Environment. In: EUROCON 2003.
Computer as a Tool. The IEEE Region 8, vol. 2, pp. 83–86 (September 2003)

4. Edwards, S.H.: Using Software Testing to Move Students from Trial-and-Error to
Reflection-in-Action. SIGCSE Bull. 36(1), 26–30 (2004)

www.manaraa.com

42 A. Höfer and M. Philipp

5. Kaufmann, R., Janzen, D.: Implications of Test-Driven development: A Pilot Study.
In: OOPSLA 2003: Companion of the 18th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications, pp. 298–299.
ACM, New York (2003)

6. Geras, A., Smith, M., Miller, J.: A Prototype Empirical Evaluation of Test Driven
Development. In: Proceedings of the 10th International Symposium on Software
Metrics, Washington, DC, USA, pp. 405–416. IEEE Computer Society, Los Alami-
tos (2004)

7. Canfora, G., Cimitile, A., Garcia, F., Piattini, M., Visaggio, C.A.: Evaluating Ad-
vantages of Test Driven Development: a Controlled Experiment with Professionals.
In: ISESE 2006: Proceedings of the 2006 ACM/IEEE international symposium on
empirical software engineering, pp. 364–371. ACM Press, New York (2006)

8. George, B., Williams, L.: An Initial Investigation of Test Driven Development in
Industry. In: SAC 2003: Proceedings of the, ACM symposium on Applied comput-
ing, pp. 1135–1139. ACM Press, New York (2003)

9. Maximilien, E.M., Williams, L.: Assessing Test-Driven Development at IBM.
In: ICSE 2003: Proceedings of the 25th International Conference on Software Engi-
neering, Washington, DC, USA, pp. 564–569. IEEE Computer Society, Los Alami-
tos (2003)

10. Bhat, T., Nagappan, N.: Evaluating the Efficacy of Test-Driven Development: In-
dustrial Case Studies. In: ISESE 2006: Proceedings of the 2006 ACM/IEEE inter-
national symposium on empirical software engineering, pp. 356–363. ACM Press,
New York (2006)

11. Dyb̊a, T., Arisholm, E., Sjøberg, D.I., Hannay, J.E., Shull, F.: Are Two Heads
Better than One? On the Effectiveness of Pair Programming. IEEE Software 24(6),
12–15 (2007)

12. Domino, M.A., Collins, R.W., Hevner, A.R., Cohen, C.F.: Conflict in collaborative
software development. In: SIGMIS CPR 2003: Proceedings of the 2003 SIGMIS
conference on Computer personnel research, pp. 44–51. ACM, New York (2003)

13. Chao, J., Atli, G.: Critical personality traits in successful pair programming.
In: Proceedings of Agile 2006 Conference, pp. 89–93 (2006)

14. Katira, N., Williams, L., Wiebe, E., Miller, C., Balik, S., Gehringer, E.: On un-
derstanding compatibility of student pair programmers. SIGCSE Bull. 36(1), 7–11
(2004)

15. Sfetsos, P., Stamelos, I., Angelis, L., Deligiannis, I.: Investigating the Impact of
Personality Types on Communication and Collaboration-Viability in Pair Pro-
gramming – An Empirical Study. In: Abrahamsson, P., Marchesi, M., Succi, G.
(eds.) XP 2006. LNCS, vol. 4044, pp. 43–52. Springer, Heidelberg (2006)

16. Mackinnon, T., Freeman, S., Craig, P.: Endo-testing: unit testing with mock ob-
jects. In: Extreme programming examined, pp. 287–301. Addison-Wesley Longman
Publishing Co., Inc., Boston (2001)

17. Hollander, M., Wolfe, D.A.: Nonparametric Statistical Methods, 2nd edn. Wiley
Interscience, Hoboken (1999)

18. Holland, B.S., DiPonzio Copenhaver, M.: Improved Bonferroni-Type Multiple Test-
ing Procedure. Psychological Bulletin 104(1), 145–149 (1988)

19. Müller, M.M., Höfer, A.: The Effect of Experience on the Test-Driven Development
Process. Empirical Software Engineering 12(6), 593–615 (2007)

20. Arisholm, E., Gallis, H., Dyb̊a, T., Sjøberg, D.I.K.: Evaluating Pair Programming
with Respect to System Complexity and Programmer Expertise. IEEE Transac-
tions on Software Engineering 33(2), 65–86 (2007)

www.manaraa.com

An Exploratory Study of Developers’ Toolbox in

an Agile Team

Irina Diana Coman and Giancarlo Succi

Free University of Bozen-Bolzano
Via della Mostra 4, 39100 Bolzano, Italy

IrinaDiana.Coman@unibz.it, Giancarlo.Succi@unibz.it

Abstract. Although Agile teams supposedly value individuals and in-
teractions over processes and tools, tools still represent an important
support for developers’ work. Existing studies investigate only partially
tool usage in non-Agile teams. Moreover, it is not clear to which extent
their findings are valid also for Agile teams. This study takes the first
steps towards understanding tool usage in Agile teams by investigating
the types and variety of tools used and the actual purpose for which
they are employed. As expected, we found that communication accounts
for an increased amount of time, but, surprisingly, a large share of it is
represented by instant messaging or email rather than face-to-face com-
munication. Other findings show that developers’ toolbox contains only
a very small number of tools and a relevant amount of time is spent on
browsing the Internet and navigating through the file system.

Keywords: Agile Methods, Agile teams, work practices, tool usage.

1 Introduction

Agile teams value individuals and interactions over processes and tools1. How-
ever, Agile teams still recognize the need for good tools to support developers
in their tasks. Examples of tools that directly support Agile practices are auto-
mated testing frameworks such as JUnit2 or test coverage tools such as NCover3.

Many tools are currently available to assist developers with their daily tasks.
Many more tools appear constantly, claiming to better address developers’ needs
or to improve their effectiveness by integrating multiple functionalities or offering
various services (such as component locating and testing [15]). Still, it is not clear
to which extent this multitude of tools is actually used and to which extent it
improves developers’ effectiveness.

Existing studies offer strategies to assess and select a tool based on a com-
bination of criteria such as tool usability, impact on developers’ work or fitness
for specific types of projects and development processes [1], [2], [3]. Such studies
offer a way for selecting a new tool, but cannot guarantee its actual adoption
1 Agile Manifesto http://agilemanifesto.org
2 JUnit http://www.junit.org
3 NCover http://www.ncover.com

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 43–52, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.manaraa.com

44 I.D. Coman and G. Succi

and effectiveness. Thus, it is not clear whether developers would actually use the
tool if they are given the choice and, if they do, whether they would actually
use it exactly in the intended way, for the intended purpose and thus with the
estimated impact on effectiveness.

Additional studies investigate non-Agile developers’ cognitive processes [4],
[5], work practices, and tool usage [6], [7], [8] with the main goal of proposing new
tools that better support the observed activities. However, such studies do not
directly evaluate the impact of existing tools and the way in which developers
cope with the multitude of available tools. Moreover, it is not clear to which
extent their findings apply also to Agile teams.

To evaluate the real impact of tools on developers’ effectiveness, we need first
to understand what tools developers actually use, to which extent and for which
purpose. Existing studies do not directly address all these issues. This paper
reports on the first steps towards addressing these issues by answering three
main questions:

Q1. How many tools do developers actually use?
Q2. Which tools do developers use frequently?
Q3. Which main purposes serve the frequently used tools?

To answer the above questions, we perform a 53 days exploratory study in a
small software team (3 developers) that is performing maintenance on several
Web applications. As it is the first such study in an Agile team, the main goal
is to shape some initial hypotheses regarding the toolbox of developers.

The main findings (to be tested also in other Agile teams) can be summarized
as follows: Agile developers constantly try out new tools, but adopt only few
of them; the toolbox of Agile developers contains very few tools (4) that are
frequently used and a few more (7) for occasional use; Agile developers spend
about 1/3 of their time on coding related activities, 1/3 on browsing the Internet,
and 1/4 on communication.

This paper is structured as follows. Section 2 presents related work. Section
3 presents the research settings and section 4 presents the raw results. Section 5
discusses the results. Finally, section 7 draws the conclusions and identifies the
limitations of this study and the directions for future work.

2 Related Work

Table 1 summarizes the findings of the existing studies on tool usage and work
practices of developers. Although existing findings offer useful insights on the tool
usage and work practices of non-Agile developers, it is not clear to which extent
these findings apply also to Agile developers. While developers are reported to
constantly try out new tools [7], it is not clear how many tools are actually
adopted in the end.

A consistent finding over all the studies that investigated developers’ activities
seems to be that developers spend large shares (up to 50%) of their time on non-
coding related activities [9], [7], [8]. However, there is not a clear consensus over
the shares of various non-coding activities.

www.manaraa.com

An Exploratory Study of Developers’ Toolbox in an Agile Team 45

Table 1. An overview of empirical studies on developer activities and tools

Topic PurposeData collec-
tion

Findings on activ-
ities

Findings on tools Ref

Understand
activities of
developers

Improve
tools

Survey, obser-
vation, inter-
view

Most frequent: read-
ing code, searching,
editing, UNIX com-
mands, compiling

Most used: compil-
ers, search tools

[6]

Understand
activities of
developers
and typical
tools used

Improve
tools

Surveys,
interviews

Most frequent:
communication,
understanding and
non-code, writing,
editing. Developers
constantly test new
work practices

49% of developers
use two or more tools
when coding. Devel-
opers constantly test
new tools.

[7]

Characterize
how people
interleave
multiple
tasks

Improve
tools

Diary study Most effort on: rou-
tine tasks, email,
project tasks, task
tracking

Not investigated [8]

Study how
developers
spend their
time

Minimize
time loss
in soft-
ware
develop-
ment

Time diary 50% of the effort is
spent on non-coding
activities

Not investigated [9]

Understand
usage of
software
maintenance
tools

Improve
tools

Questionnaire,
interview,
direct ob-
servation,
automated
logging of tool
usage

Developers explore
software as much as
edit it.

Most used: editors,
search tools. Main
positive: ease of use,
useful features, rapid
response time. Main
negative: lack of inte-
gration, wrong mix of
features.

[10]

All of the existing studies (with one exception, [10]) use various forms of
manual data collection. However, manual data collection itself affects the work
of developers, is error prone and does not allow for very fine grained analyses,
at the level of short events (seconds) that might add up to important amounts.

By contrast to the existing studies, we investigate the tool usage in a new
context, namely Agile teams. We focus on the actual tools that developers use
on a daily basis and we try to understand which activities take large shares of
developers’ time. Unlike most of the existing studies, we use mainly automated
data collection techniques that do not intrude upon the work of developers, are
not biased, and offer very fine grained data accounting for each second of the
time that developers spend interacting with their computers.

This study complements existing works in this field by investigating tool usage
in the different context of Agile development. This study investigates also in more
detail the toolbox of developers based on extensive, fine-grained data.

www.manaraa.com

46 I.D. Coman and G. Succi

3 Research Settings

To answer our questions, we performed an exploratory study in a small Austrian
software company that develops and maintains Web applications. Due to the
sensitive nature of the data presented here, the company will remain anonymous
and we’ll refer to it as Company Small.

The team participating to our study consists in three regular developers.
All three developers are Austrian, males, between 28 and 35 years old, with
university degrees in computer related fields, and 5-10 years of programming
experience. During our study, the developers performed maintenance tasks on
three existing projects. They use Java, HTML, and Javascript as main program-
ming languages and work with the Eclipse and Homesite5 IDEs. The team is
an Agile team using a customized version of Extreme Programming [12], [13].
In particular, they use weekly iterations [13], [14] and user stories [14]. They
are strongly encouraged to work not more than 8 hours per day. The char-
acteristics of the development team involved in this study are summarized in
Table 2.

Table 2. An overview of empirical studies on developer activities and tools

Company Small

Team size 3 developers

Team type Maintenance on web-applications (company’s main product)

Nationality Austrian

Background University degree in computer related fields

Experience 5-10 years

Languages Java, HTML, Javascript

IDEs Eclipse, Homesite5

Paradigm Customized XP (weekly iterations, user stories)

During all the duration of our study (53 working days), we use PROM [11]
to collect data in a fully non-intrusive and automated way. The data consist in
a stream of events that reflect the developer-computer interaction. Each event
consists in a timestamp, the name of the currently used software application,
and the name of the currently focused window (for all software applications) or
the name of the current method, class, and file (for code). The granularity of
the data is of one second. Developers could also manually insert data regarding
time spent in non-computer activities such as meetings or phone calls.

The data collected from the three developers cover 52, 50, and 46 days re-
spectively, as the developers were absent for various reasons during 1, 3, and 7
days respectively. On average, there are approximately 6 daily hours of computer
interaction (6.62 ± 1.88), over all developers and all days.

www.manaraa.com

An Exploratory Study of Developers’ Toolbox in an Agile Team 47

4 Results

The goal of the study in company Small is to get an initial understanding of the
toolbox of Agile developers, and to shape hypotheses regarding the potential
answers to our initial three questions. Additionally, the study serves to identify
other directions that were not obvious beforehand and that would benefit from
deeper investigation.

To answer question Q1, we consider each distinct software application as a
tool. Examples of tools are Internet Explorer browser or Eclipse development
environment. We discard the tools that were used for less than 10 minutes (over
all days and developers) as we consider that such a short usage time does not
indicate actual usage or even testing of a tool. According to our data, the three
developers used 26, 27, and 31 distinct tools respectively, during the 53 working
days of the study. However, these tools were not all the same for all three devel-
opers. Considering the three developers together, they used 41 distinct tools.

As these numbers look rather big, we investigate more in detail how the to-
tal time recorded is divided among the usage of the various tools. There are
only a few tools that have large shares of developer’s time, while many others
account for very little amount of time. Thus, to answer question Q2, we con-
sider as frequently used tools only those that were used by each developer for
at least 1% of his total time. According to our data, the three developers use
frequently 12, 11, and 13 tools respectively. These frequently used tools account
for 93.63% of the total time recorded for all three developers in company Small
(Figure 1).

Fig. 1. Breakdown of computer interaction time on frequently used tools

www.manaraa.com

48 I.D. Coman and G. Succi

Table 3. Categories and tools

Category Software tools

Coding IDEs; CVS/SVN clients; test frameworks; Internal software.

Communication Email and Instant Messaging clients;Word(default editor for emails).

Internet Internet browsers; Wiki tools.

Documents All Microsoft Office except Word; all Open Office; text editors; Acro-
bat Reader; timesheet software.

Navigating Windows Explorer; Microsoft Management Console; Task Manager;
desktop search clients; console; archivers; file utilities.

Fig. 2. Breakdown of computer interaction
time on activities

Fig. 3. Breakdown of 8 hours day on
activities

As a first step towards answering question Q3, we group the tools into cate-
gories corresponding to higher level activities (Table 3). We obtain 5 main cate-
gories: Coding (includes IDEs and other software directly linked to programming
activities, such as testing frameworks), Communication (email and IM clients as
well as Microsoft Word as it was the default editor for email), Internet (Internet
browsers and Wiki tools), Documents (Microsoft Office and Open Office), and
Navigating (file system browsers and terminals). The tools that did not belong
to any of these categories were all grouped under the name Other.

Computing the breakdown of developers’ computer time among the 5 activ-
ities, reveals that Coding takes only 33%, followed closely by Internet (29%),
Communication (19%), Navigating (4%), and Documents (2%) (Figure 2).

However, we compute these percentages considering only the computer active
time. Considering all the 8 hours that make a developer’s working day would
decrease the percentage of time spent on Coding and would increase the per-
centage of time spent on Communication (as most of the activities outside the
computer are planned or unplanned meetings and phone calls). A typical devel-
oper’s day in company Small consists in 8 working hours out of which, on aver-
age, the developer spends 6.62 hours interacting with his computer. Adding thus
the remaining time (on average 1.38 hours) as Communication and computing

www.manaraa.com

An Exploratory Study of Developers’ Toolbox in an Agile Team 49

again the percentages considering 8 daily hours, yields that Coding accounts
for only 31% of developers’ time, followed by Internet (28%), Communication
(24%), Navigating (3%), and Documents (2%) (Figure 3).

5 Discussion

Developers use a large number of tools overall (41), but less than a quarter
of them on a regular basis (11). Most of the tools (30) are used only for very
little time, accounting for less than 1% of the total time recorded. This would
correspond more to developers exploring a tool rather than actually using it as
part of their regular toolbox. However, in total, these tools account for 6% of
developers’ computer time which suggests that developers use about 1/2 hour
daily to explore various tools. This would also be consistent with other existing
studies that found that non-Agile developers are constantly testing new tools [7].
Considering also the small number of tools in the regular toolbox of developers
(Figure 1), the conclusion is:

H1. Developers constantly try out new tools, but adopt only a few.

Out of the 11 tools in the developers’ regular toolbox (accounting each of them
for at least 1% of developers’ time), there are 7 tools that are intensively used
(each accounts for at least 5%), while the other 4 tools seem to be used only
occasionally, accounting each of them for less than 5% (Figure 1). Thus, the
second conclusion is the following:

H2. The regular toolbox of developers contains very few tools that
are intensively used and a few more tools for occasional use.

The breakdown of developers’ time on activities (Figure 2 and Figure 3) shows
that developers spend only about 1/3 of their time on coding related activities
while another 1/3 of the time they navigate the Internet and about 1/4 of the
time they use communication tools. Additionally, only navigating through the
file system or searching for a file takes about 4% of the time developers interact
with their computer. Consequently, conclusions H3 and H4 are the following:

H3. Developers spend about 1/3 of their time on coding related ac-
tivities, 1/3 on browsing the Internet and 1/4 on communication.

H4. Developers spend a relevant amount of their time (≈ 5%) on nav-
igating the file system or searching for a file.

The large share of Internet might be caused in this case by the fact that the
team developed and maintained Web applications. Thus, part of the time spent
on Internet might be due to testing the developed application and would rather
belong to the Coding activity. This raises the need for deeper investigation of the
Internet activity for identifying the different purposes of Internet usage. Thus,
question Q3 would benefit from refinement with the following question:

www.manaraa.com

50 I.D. Coman and G. Succi

Q3.1. For which main purposes do developers use Internet?

Although other studies already noticed that developers spend about half of their
time in non-coding activities [9], and in particular in communication [7], these
studies considered all the daily activity of developers rather than just their com-
puter interaction. However, the study in company Small shows that communi-
cation maintains a large share of developers’ time also when considering only
the time spent in computer interaction. On one hand, this makes perhaps less
surprising the large share of computer time (on average 6.62 daily hours out of 8)
given that part of the communication seems to have migrated from other medias
to the computer. However, the large share that communication has in computer
interaction time is quite surprising considering also that the team was small and
had the possibility of easy communication among the members given that they
all worked in the same room. Moreover, as the team is an Agile team, the mem-
bers supposedly valued, in all their interactions, face-to-face communication over
other means. These observations lead to another question that details the main
scope of question Q3:

Q3.2. For which main purposes do developers use communication
tools?

To answer the additional questions Q3.1 and Q3.2, we have to distinguish be-
tween the various purposes for which the same application might be used. More
precisely, the Internet usage could be further refined into searching for code ex-
amples or documentation, testing Web applications or editing the Wiki of the
team. The communication tools could be used, for instance, for asking colleagues
for information when getting stuck with some code (IM), for receiving company
communications (email) or simply for taking a break. As these questions revealed
themselves only at the end of this study, we do not have enough information to
attempt to answer them for company Small. Instead, we consider that another
study should be designed to collect all the data required to provide reliable
answers to these questions and to test the conclusions of this study.

The implications of H1 and H2 would be that despite their big numbers and
variety, most of the existing tools fail to convince the developers of their promised
benefits. Developers seem instead to stick with the already established tools
(Figure 1) and to prefer perhaps integrated functionality (such as plug-ins for
the IDE) to new, stand-alone tools. Still, developers are in constant search of
improved tools, as they diligently test many new tools (H1). As developers spend
large amounts of time simply to find the files they need, there seems to be a
dire need of improvement in the way in which files are organized on developers’
computers. Current file systems seem to be inadequate for developers’ needs and
cost them precious time (H4).

The tools generally support developers in their activities, but it seems that
some of them, such as Communication and Internet tools, might actually de-
crease developers’ productivity. This is suggested by our findings that developers
spend only 31% of their time coding (H3), while older studies reported 50% [9].
However, these implications need to be further tested in future studies.

www.manaraa.com

An Exploratory Study of Developers’ Toolbox in an Agile Team 51

Table 4. Main findings of this study

Literature This study Empirical conclusion

Developers constantly
test new tools

Confirmed and added that
few tools are adopted.

Most of the new stand-alone tools
fail to convince developers.

50% of developers’ time
is spent for non-coding
activities

66% of developers’ time is
spent for non-coding activ-
ities.

Part of the communication has
moved to computer media; In-
ternet and Communication might
actually decrease productivity.

N/A Few tools are actually used Developers use established tools
and prefer integrated tools.

N/A ≈ 5% of developers’ time
spent navigating file sys-
tems or searching for files.

Current organization of file sys-
tems is inadequate for developers’
needs.

6 Conclusions and Future Work

This paper offers an initial understanding of the actual toolbox of Agile devel-
opers, based on an empirical study in a software team of three developers. The
study uses extensive data collected automatically and non-intrusively over 53
working days. The main findings are summarized in Table 4.

The collected data offer evidence of the following: developers constantly test
new tools but adopt only few of them (H1); the regular toolbox of developers
contains very few tools that are intensively used and a few more that are only
occasionally used (H2); developers spend about 1/3 of their time on coding ac-
tivities, 1/3 on browsing Internet and 1/4 on communication (H3); developers
spend a large amount of time on navigating the file system or searching for a file
(H4). Additionally, the study reveals a need to investigate deeper the usage of
Internet and Communication tools and proposes to distinguish in future studies
on various purposes for which developers use such tools (e.g. usage of Communi-
cation tools to ask colleagues for help or to receive company communications).

We consider as future work to perform other studies in Agile companies to
further test H1 to H4 and to answer the additional questions Q3.1 and Q3.2.

When considering the findings of this study, several limitations have to be
taken into account. The small size of the sample (one team of three developers)
makes it hard to generalize the results. Thus, we consider the results of this
study as initial concrete hypotheses to be assessed in future studies.

Additional internal limitations to this study concern the tool used for data
collection. To ensure privacy rights, developers could suspend the data collection
at any time, partially or completely, temporarily or definitively. Such option
was transparent to us. However, the data cover on average 6 hours of daily
interaction. As developers were rarely doing extra hours, we consider the 6 hours
of data as a proof that developers did not suspend data collection for relevant
amounts of time.

Another limitation is due to the data collection tool not being able to discern
very short interruptions (seconds or a few minutes). Such interruptions can be

www.manaraa.com

52 I.D. Coman and G. Succi

easily generated as developers work in a shared environment. Thus, the active
time spent in computer interaction might be slightly lower than the values ob-
served in this study. Longer idle periods of time are not a threat to this study
as the tool automatically detects and discards them.

References

1. Bruckhaus, T., Madhavji, N.H., Janssen, I., Henshaw, J.: The Impact of Tools on
Software Productivity. IEEE Software, 29–38 (September 1996)

2. Poston, R., Sexton, M.: Evaluating and Selecting Testing Tools. IEEE Software,
33–42 (May 1992)

3. Atkins, D.L., Ball, T., Graves, T.L., Mockus, A.: Using Version Control Data to
Evaluate the Impact of Software Tools: A Case Study of the Version Editor. IEEE
Transactions on Software Engineering, 625–637 (July 2002)

4. Von Mayrhauser, A., Vans, A.: From Program Comprehension to Tool Require-
ments for an Industrial Environment. In: Workshop on Program Comprehension,
pp. 78–86 (1993)

5. Von Mayrhauser, A., Vans, A.: From Code Understanding Needs to Reverse Engi-
neering Tool Capabilities. In: Proc. Workshop on Computer-Aided Software Engi-
neering, pp. 230–239 (1993)

6. Singer, J., Lethbridge, T., Vinson, N., Anquetil, N.: An Examination of Software
Engineering Work Practices. In: Proc. CASCON, pp. 209–223 (1997)

7. LaToza, T.D., Venolia, G., DeLine, R.: Maintaining Mental Models: A Study of
Developer Work Habits. In: Proc. of ICSE (2006)

8. Czerwinski, M., Horvitz, E., Wilhite, S.: A Diary Study of Task Switching and
Interruptions. In: Proc. ACM Conf. on Human Factors in Computing Systems
(2004)

9. Perry, D.E., Staudenmayer, N.A., Votta, L.G.: People, Organizations and Process
Improvement. IEEE Software, 36–45 (1994)

10. Lethbridge, T.C., Singer, J.: Understanding Software Maintenance Tools: Some
Empirical Research. In: Proc. Workshop on Empirical Studies in Software Mainte-
nance (1997)

11. Sillitti, A., Janes, A., Succi, G., Vernazza, T.: Collecting, Integrating and Analyzing
Software Metrics and Personal Software Process Data. In: Proc. of EUROMICRO,
pp. 336–342 (2003)

12. Beck, K.: Extreme Programming Explained. Addison-Wesley, Reading (1999)
13. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change.

Addison-Wesley, Reading (2005)
14. Beck, K., Fowler, M.: Planning Extreme Programming. Addison-Wesley, Reading

(2001)
15. Gross, H.-G., Melideo, M., Sillitti, A.: Self-certification and Trust in Component

Procurement. Science of Computer Programming 56(1-2), 141–156 (2005)

www.manaraa.com

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 53–62, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Balancing Individual and Collaborative Work in Agile
Teams

Hamish T. Barney1, Nils B. Moe2, Tore Dybå2, Aybüke Aurum1,
and Martha Winata1

1 Information Systems, Technology and Management, UNSW, Sydney NSW 2052, Australia
hamish@hbarney.com, aybuke@unsw.edu.au,

m.winata@student.unsw.edu.au
2 SINTEF ICT, NO-7465 Trondheim, Norway

{nilsm,tored}@sintef.no

Abstract. In the agile approach, the self-organizing team itself decides how
work is coordinated. For individuals in a team to be motivated and satisfied
with their job they need to have control over their work and over the scheduling
and implementation of their own tasks. However, individual and team level
autonomy may conflict, and reduce the effectiveness of the team. Therefore,
there is a need to investigate how to achieve empowerment at the individual and
team levels simultaneously. An Australian software developer, Atlassian, has
developed an interesting way of solving these problems with FedEx Day. Once
every three months, developers get a day to work on whatever they like! Like
an express courier, a developer must deliver something in a day. Developers
then present their work to the rest of the company. Some of this work then ends
up getting incorporated into the products.

Keywords: teamwork, individual work, autonomy, self-managing, self-
organizing, agile software development, scrum, XP, FedEx day, case study.

1 Introduction

Software development requires the intellectual capital of skilled professionals – both
as individual contributors and as collaborators in a team, where the knowledge of
several individuals is integrated. Such teamwork has become critical for software
companies, with team autonomy as a crucial factor for work group effectiveness [1].
At the same time, individuals need to be motivated and satisfied with their jobs by
having control over their own work and over the scheduling and implementation of
their own tasks [1-3]. However, as individual work becomes more autonomous, there
will be less interaction between group members, which may be a threat to teamwork
effectiveness [1].

Therefore, there is a need to balance both individual and team autonomy in a soft-
ware team. Hoegl and Parboteeah [4], for example, found that software developers
doing innovative work need to participate in both collaborative work periods and
individual work periods. Also, research in psychology and organization has identified
individual autonomy as an important intrinsic motivator [2, 3, 5]. Unfortunately, using

www.manaraa.com

54 H.T. Barney et al.

individual autonomy as such a motivator is fraught with a range of difficulties. How
can a company ensure that employees given the freedom to work independently will
not squander the opportunity or worse yet use the company’s assets for personal gain
at the expense of the company?

Team autonomy is at the heart of agile software development in which the team it-
self decides how work is coordinated [6]. In Scrum, for example, the team is given
significant authority and responsibility for many aspects of their work, such as plan-
ning, scheduling, assigning tasks to members, and making decisions.

It is worth noting that while agile practices, like Scrum and XP, often give the team
as a whole a great deal of autonomy, it does not follow that the individual team mem-
bers are given high levels of individual autonomy. Barker [7], for example, pointed
out that self-managing groups may end up controlling group members more rigidly
than they do under traditional management styles, while Markham and Markham [8]
suggested that it may be difficult to incorporate both individual autonomy and group
autonomy in the same work group.

Thus, balancing team level autonomy and individual level autonomy in software
teams is challenging; especially when development is done in market-driven agile
projects with fixed scope and deadlines. Motivated by this, our research question has
been: How can individual and team autonomy be balanced in a software team?

We have studied a company, Atlassian, that has found one way of balancing these
levels of autonomy by implementing an organizational practice that fosters both col-
laborative and individual work and that also motivates their employees to work in the
interest of the firm without diminishing intrinsic motivation “FedEx Day”.

The rest of this paper is organized as follows: Section 2 gives a overview of re-
search on collaborative and individual work. Section 3 defines and describes the case-
study. Section 4 presents our findings, and finally, our discussion and conclusions are
presented in section 5 and 6 respectively.

2 Collaborative and Individual Work

Although agile development is a new approach to organization, the notion of self-
management is not new; there has been research in this area since Trist’s examination
of self-regulated coal miners in the 1950s [9]. We use the label "self-organizing"
teams as a synonym for "autonomous teams" and for "empowered teams". Guzzo and
Dickson [10] described such a team as a group of employees who typically perform
highly related or interdependent jobs, who are identified and identifiable as a social
unit in an organization, and who are given significant authority and responsibility for
many aspects of their work, such as planning, scheduling, assigning tasks to members,
and making decisions with economic consequences.

Autonomous teams stimulate participation and involvement, leading to team mem-
bers developing an emotional attachment to the organization, greater commitment and
motivation to perform and desire for responsibility [11]. Self-organization requires a
belief in local rationality of individuals and units (e.g. those closest to the customer
know the customer best). It is consistent with the often espoused idea of delegating
decision making to the lowest possible level and it implies maximizing capabilities of

www.manaraa.com

 Balancing Individual and Collaborative Work in Agile Teams 55

scope at every level of the organization [12]. Self-management can also directly influ-
ence team effectiveness since it brings decision-making authority to the level of op-
erational problems and uncertainties and, thus, increases the speed and accuracy of
problem solving [13].

Even though there are several studies on the benefits of self-organizing teams,
there is substantial variance in research findings regarding the consequences of such
teams on such measures as productivity, turnover, and attitudes [10, 13]. Tata and
Prasada [13] found that employees really need to affect managerial decisions in order
to achieve the putative benefits of a self-managed team. It is important that the team
does not experience autonomy that is only symbolic.

The fact that autonomy can simultaneously reside at both the group and the indi-
vidual level in a work group is often neglected in studies of self-management [1]. A
group may have considerable discretion in deciding what group tasks to perform and
how to carry them out, but individual members within the group may have very little
discretion or control over their jobs.

Encouraging individual autonomy has been shown to have many positive effects in
both laboratory and field research [2]. Offering workers greater individual autonomy
increases: the degree to which extrinsic motivation offered employees is internalised
[14], job satisfaction and positive work attitudes [15-17]. Greater internalisation of
extrinsic motivation has been shown to lead to effective performance on tasks requir-
ing creativity, cognitive flexibility and conceptual understanding [18-20]. These are
the very characteristics of software development work. Practices that increase indi-
vidual autonomy are, therefore, extremely valuable, especially if they can be lever-
aged to provide real value to the employer.

Kirkman and Rosen [21] emphasized the importance of taking both individual and
group effects into account, stating that ”what is needed most in the team effectiveness
literature is research that examines empowerment at the individual and team levels
simultaneously.” Additionally, a practical implication of Langfred’s [1] findings is
that, if an organization believes in letting teams be more self-managing, great care
must be taken in the implementation. Autonomy at the individual level may conflict
with autonomy at the group level, producing countervailing influence on the cohe-
siveness and, indirectly, effectiveness of the team. An organization could thus experi-
ence little or no results from empowering employees. As far as the authors are aware,
there is no empirical work from the software industry on how the balance between
individual and team autonomy can be achieved.

3 Research Method

Given the focus discussed above, we choose a case study that would allow us to in-
vestigate our research question.

3.1 Study Context

The case study was undertaken at Atlassian, a medium-sized company selling mass-
market software. The software is also used internally in Atlassian, which means that
the developers are also users of the software. This is seen as a positive thing within

www.manaraa.com

56 H.T. Barney et al.

the company and something that may be important in facilitating a practice like
FedEx Day. For instance, the program manager commented that “the fact that we use
our own products to help communicate and to help foster that culture is a really cool
reinforcing kind of loop and it means that everyone owns their own products and we
all use [the Atlassian products] internally, so it means you can be really proud of a
product… In some of the companies I previously worked at I’ve had no idea how to
use our products or what the typical user’s problems might be”.

The company is based in Australia but has offices in several countries in Europe
and the United States. Software development is undertaken at all of these locations.
The company has, since its inception, used a combination of XP and Scrum, and has
undergone rapid growth; approximately doubling its size each year of its seven year
existence.

Atlassian is an open company with important company details being available to
all employees. Internal and external wikis and blogs are used heavily and these often
host lively discussions about the company. As one of the managers commented, “eve-
rything gets documented on the [intranet], everyone has buy in and everyone has a say
in everything so that’s why it’s such a cool place to work”.

The founders of the company were responsible for the initial development of some
of Atlassian’s products. They still play a role in software development and are well-
known within the company for quickly developing prototypes of new features. When
interviewed, the head of engineering commented on this practice: “Yes, especially
[one of the founders]. But he's prototyping, he'll be: I can't tell you what I want, so let
me code it real quick, then I’ll show you, that's [one of the founders]. Yeah it's scary.”

The attitude displayed by the founders towards prototyping has translated itself
throughout the company to a preference for action rather than just words or ideas. One
of the core company values is for individuals within the company to be proactive, not
just to have ideas but also to do something about them. A tech lead discussed this
aspect of Atlassian’s culture: “it's just ideas and I have ideas and I want other people
to see my ideas, our company isn't as big on it. It's basically do it. Don't just tell me
about some great dashboard, show me a prototype, do something, make it happen in
the product or something.”

3.2 Data Sources and Analysis

We relied mainly on qualitative semi-structured interviews as these provide a rich
picture of the internal workings of the company in general and the specifics of the
FedEx Day, the development practice under investigation. 17 employees were inter-
viewed: 15 team members, tech leads, and team leads from three product teams and
two executives. Each of the semi-structured interviews took approximately one hour.
All interviews were recorded and transcribed.

To be able to address a broader range of historical and behavioral issues [22], we
used multiple sources of evidence. In addition to interviews, we collected data from
Atlassian’s internal and external websites, which host information and discussions
about Atlassian’s development practices and the company’s structure and culture.
These sites are updated frequently and all employees are encouraged to participate in
these forums. Data were then categorized and coded. Observations were also made in-
situ by attending meetings and observing the operation of FedEx Day.

www.manaraa.com

 Balancing Individual and Collaborative Work in Agile Teams 57

By combining the data from interviews with the information from the websites, we
were able to develop a converging line of inquiry [22] by forming a rich and accurate
picture of the company in general and the practice of FedEx Day in particular. Our
main analysis technique was to combine a pattern-matching logic with explanation
building [22]. That is, we compared the empirically based patterns with the ones pre-
dicted from the theoretical propositions of team level and individual level autonomy,
while at the same time building an explanation of the case. This strategy also helped
us to strengthen the internal validity of the case study.

4 FedEx Day and Agile Development at Atlassian

4.1 Task Allocation at Atlassian

The way tasks are allocated normally at Atlassian is crucial to understanding FedEx
Day and its effects. Each team has a product backlog that is updated regularly based
on releases. A release includes major feature improvements that can be marketed and
distributed to all customers. Features in the release backlog get divided into sprints
and each sprint produces a point release – a smaller product release. At the beginning
of each sprint, the list of features is presented to the developers.

Identifying and allocating tasks/features affects the level of individual autonomy
since this defines what the developer will do. This is done differently in the various
teams at Atlassian. We found that in some teams there was little scope for individuals
to choose the tasks they wanted, because there was little redundancy in the teams.
One developer said: “A lot of the time it is based on whoever can do the tasks because
we've got all very different skill sets”. One team leader from another project said:
“People do volunteer, but there's never a surprise on what they volunteered for.” An-
other said: “we don’t share what everyone’s working on and how it works. That’s
why if someone gets sick, it can take longer time to pick up the stuff after them”.

Another team leader, responsible for 15 developers in 4 sub-teams, said: “We
found with XP, the whole approach of not doing a lot of planning up front gives us a
lot of trouble… a lot of people get frustrated because the release takes longer than the
original plan”. This team leader pre-planned the sprint with management and with
some input from developers. Then, during the Scrum planning meeting, the team
leader assigns tasks to developers.

The introduction of story cards into one of the development teams was seen as re-
ducing individual autonomy. Story cards are a standard XP practice. Requirements are
broken up into short user stories, which are written on small cards. A developer is
assigned (or chooses) one or more story cards to work on. Estimated and actual time
spent is also tracked on the story card. In this team story cards were assigned to de-
velopers in the fortnightly planning meetings or by the team leader. In many ways the
introduction of story cards increased group autonomy with story cards being selected
and prioritised by the whole team during their planning meetings. However, many
developers commented on the feeling that, with their time being tracked, they no
longer had the freedom to experiment and play with new features.

The developers are encouraged to suggest features that should be in the product
backlog. However, resource limitations led upper management to reduce the number

www.manaraa.com

58 H.T. Barney et al.

of features the teams could develop for a release, since resources are allocated accord-
ing to the revenue generated. In terms of prioritising the features, a developer ex-
plained how he influenced the direction of the product: “[The CEOs] do kind of get a
higher priority when we're making our decisions. But in the end it's really the devel-
opers and our product manager that decides what goes in and what goes out and have
full control over what we do”. Only a few developers reported having this kind of
influence on the product, mostly those in the smaller teams.

4.2 FedEx Day

FedEx Day is one of the practices that Atlassian has adopted that allows the develop-
ers to exercise their individual autonomy in developing software in a way that also
has direct benefits for Atlassian. Once, every three or four months, most developers
voluntarily take a day to work on whatever they like. Just like an express courier, a
developer has to deliver something in a day. After they are finished they present and
demonstrate their work to the rest of the people in the company. Some of this work
then ends up getting incorporated into the products. FedEx Day is not just a one (or
one-and-a-half) day affair. There is actually a couple of weeks of preparation that go
on leading up to a FedEx Day and then, after FedEx Day, some of the finished pro-
jects are made production-ready.

A FedEx Day coordinator does a lot of the organization that goes into making a
FedEx Day a success both before and after the event. The FedEx Day coordinator lets
everyone know that a FedEx Day is coming up. He or she organizes a series of volun-
tary lunchtime meetings where developers bring their lunch, to discuss FedEx Day
project ideas. Most people already have some kind of idea about what they want to
do, for instance: something about the product that’s been bothering them for months,
some new technology that they want to try out or some new feature that they think
would be brilliant but cannot get other people to agree. Some developers go to the
meetings not quite sure what they want to do, looking to be inspired by other people’s
ideas. Developers are not restricted to working on the product they normally work
with, “it can be anything you want.” (Developer).

As FedEx Day approaches, developers write up their FedEx Day ideas as “FedEx
Orders”, which are short descriptions of what they aim to achieve. Other developers
comment on these “FedEx Orders”, offering hints, suggestions and ideas.

Watching the developers work during FedEx Day, the sense of excitement and fo-
cus is palpable. People work more intently for the time during FedEx Day than at any
other time. Developers described the adrenaline and sense of exhilaration and gut
wrenching pressure they feel when they are competing in a FedEx Day. The whole
time the ticking clock hangs over them like the sword of Damocles. Developers feel a
genuine sense of pressure, they want to show off their abilities and prove that their
ideas will work.

Instead of their usual development process that includes producing automated tests
and documentation, “[y]ou just blast out the feature, hack it out however you want”
(Developer). This offers what developers perceive as a pleasant change of pace from
the usual, and more conservative, day-to-day development process. These things are
added later if the feature is adopted in one of the products.

www.manaraa.com

 Balancing Individual and Collaborative Work in Agile Teams 59

After a full day of intense activity, the developers present their projects to one an-
other. Experienced FedEx Day developers also know that an impressive presentation
can make or break a FedEx Day project. As a result they always make sure that they
set aside time to create a convincing presentation, even if it means that the last one or
two features aren’t quite finished. One of the veteran team leaders commented that:
“the easiest way to impress people [in FedEx Day] is to develop something flashy…
if the demo looks good… it works out.”

After watching everyone’s presentation, people vote on which projects they thought
were the best. The winner gets a prize: an attractive trophy (with FedEx vans on it)
and, perhaps most importantly, bragging rights for the next couple of months.

In the weeks following FedEx Days, developers write blog posts about their FedEx
projects (sometimes with some gentle prodding by the FedEx Day coordinator). The
FedEx Day coordinator then organizes the publication of some of these FedEx Day
Project write-ups on Atlassian’s external blogs. Some of the projects then make it in
to the product backlogs. Sometimes the FedEx Day project will be included as op-
tional extras that customers can download.

4.3 Benefits of FedEx Day

According to one team leader, developers “get to work on things that they really want
to do”. The developers themselves share this perception. For instance one developer
commented that he “love[s] doing [FedEx Day] because it is something that I thought
of myself and it's something that hasn't really been done before.” It provides develop-
ers with a “creative outlet” that some developers feel they need.

As a result of FedEx Day, the developers “make almost individual contribution to
the product, makes them identify with the product a lot more”. Another team leader’s
statements provided another example of the perceived benefits: “I think the best thing
about FedEx is developer morale, even if we don’t get a lot of usable products out,
and we do, but even if we didn’t, the benefit to morale is incalculable, because people
get to go and do fun stuff that stops burnout, it lets people play with new ideas, it lets
everybody know that their ideas and their thought processes are valued, and so I think
that’s the best, people get the chance to drop everything else, do something fun, and
Atlassian gets value out of it, because the stuff that comes out of there are connected,
and can shift [the direction of the product].”

The effect on productivity that providing people with greater individual autonomy
predicted by some of the psychology literature [18-20] is also confirmed by the ex-
perience of FedEx Day at Atlassian. One team leader estimated that “people get about
three days of work done in that one day, it’s amazing”. The intensity with which peo-
ple work and their productivity was confirmed by our own observations.

Most of the interviewees cited the degree of participation in the decision-making
process, with respect to decisions about the products that they are working on and the
company as a whole, as one of the best things about working at Atlassian. Interest-
ingly, this was despite the observations that individual developers did not seem to
exercise a much direct influence over the selection and prioritization of requirements,
especially in the larger teams. One developer said that the best thing about working at
Atlassian was he is “part of that decision making process that decides what goes into

www.manaraa.com

60 H.T. Barney et al.

the product. So I feel that I also have control over what my product does, and what
my work is going to be.” Similarly, another developer commented that “I've never
really felt that there is a huge impedance between things that I want to do and where
the company is going.” FedEx Day appears to play a role in fostering this feeling
among the Atlassian employees.

4.4 FedEx Day Challenges

While all interviewees were in agreement that FedEx Day is a net positive there are
some negative aspects to FedEx Day. For instance, the competitive aspect of FedEx
Day means that crowd-pleasing presentations and visually impressive features will
often win over features that, while more technically interesting, are less eye-catching.
Two team leaders commented on this phenomenon: “the problem with FedEx I think
it's the fact that it's a competition right? …I guess the easiest way to impress people
[and win FedEx Day] is to develop something flashy”, “usually just some[thing]
really flashy [wins]”. It should, however, be noted that this is not always the case.
Many FedEx Day projects are useful and are integrated into the products.

The expense and difficulty of arranging for all developers to take a day and a half
off normal work to participate in FedEx Day is also one of the challenges associated
with FedEx Day. Despite an upcoming scheduled release of a product, the team lead
felt obliged to encourage the developers in his team to participate in FedEx Day
despite the difficulties that could have ensued if the release went badly.

5 Discussion

This study highlights the difference between team and individual level autonomy,
which is especially important in the context of agile software development. In this
case study it has been shown that individual level autonomy can sometimes be sup-
pressed even in self-managing teams. As such, it is important that compensating prac-
tices be adopted that allow companies to strike a balance between individual and team
autonomy. One particular practice that acts to promote individual autonomy, FedEx
Day, was introduced at Atlassian.

Past research has shown that people working in self-organized teams are more sat-
isfied [11]. However, working in a self-organized team may not lead to employees
fulfilling their needs for individual autonomy. For instance, one important aspect of
working in an agile team is getting all team members to commit to the requirements
that are to be implemented and their priority. Achieving this agreement may lead to a
suppression of individual autonomy as individuals’ ideas and interests are suppressed
in process of gaining shared commitment.

The fact that tasks were often assigned based on skills rather than preferences was
the main reason for the reduction in individual autonomy in Atlassian. Morgan [23]
refers to this as lack of redundancy. FedEx Day is one way that Atlassian addresses
this reduction in individual autonomy, allowing developers to experiment with tech-
nologies and ideas that they may be interested in but rarely get to try because of their
existing skill-set.

www.manaraa.com

 Balancing Individual and Collaborative Work in Agile Teams 61

Another finding was that the introduction of story cards in the development process
was associated with greater team-level autonomy but reduced individual autonomy. By
adopting practices like FedEx Day, organizations may be able to counteract the re-
duced individual-level autonomy that many of the popular XP and Scrum practices
may lead to. FedEx Day allowed developers to explore and experiment with new tech-
nologies and their own ideas that the adoption of story cards had suppressed.

Despite the fact that most developers are not directly involved in the decision-
making process about the selection and prioritization of features they still feel very
involved in the decisions that are made in the company. This perception can, to a
great extent, be attributed to the practices that foster individual autonomy, like FedEx
Day. FedEx day is an interesting practice that facilitates greater individual autonomy.
Increased levels of individual autonomy have been shown to have a range of benefi-
cial effects especially with tasks that, like software development, require creativity,
cognitive flexibility and conceptual understanding [18-20].

6 Conclusion

In this article we presented FedEx Day, which is one way Atlassian has addressed the
challenge of balancing individual autonomy with high levels of team autonomy. By
setting aside a day and a half for developers to work on a project of their own choos-
ing, Atlassian has been able to increase the level of individual autonomy offered to
their staff. A range of benefits have accrued to Atlassian as a result of adopting this
practice including: a positive effect on staff morale, advantages in hiring and retaining
staff, greater identification by the developers with the company and its products and
increased productivity. FedEx Day has several additional benefits for the company
and the individuals that participate, including encouraging innovation and entrepre-
neurship. There are also potential negative impacts of FedEx Day like competitive-
ness and poor self-esteem. These did not become apparent over the course of this
study but may emerge in a longer-term study of this practice. We plan to examine
these aspects of FedEx Day and related practices in our future research.

It would also be of great interest to assess the impact of FedEx Day in other or-
ganizations. The effects of adopting this practice in other organizations could be un-
dertaken either by engaging in action research or by identifying organizations that
engage in similar practices.

References

1. Langfred, C.W.: The paradox of self-management: Individual and group autonomy in work
groups. Journal of Organizational Behavior 21, 563–585 (2000)

2. Gagne, M., Deci, E.: Self-determination theory and work motivation. Journal of Organiza-
tional Behavior 26, 331–362 (2005)

3. Osterloh, M., Frey, B.: Motivation, Knowledge Transfer, and Organizational Forms. Or-
ganization Science 11, 538–550 (2000)

4. Hoegl, M., Parboteeah, K.P.: Creativity in innovative projects: How teamwork matters.
Journal of Engineering and Technology Management 24, 148–166 (2007)

www.manaraa.com

62 H.T. Barney et al.

5. Foss, K., Foss, N., Klein, P.: Original and Derived Judgment: An Entrepreneurial Theory
of Economic Organization. Organization Studies 28, 1–20 (2007)

6. Boehm, B.W., Turner, R.: Balancing Agility and Discipline: A Guide for the Perplexed.
Addison-Wesley, Reading (2003)

7. Barker, J.R.: Tightening the Iron Cage - Concertive Control in Self-Managing Teams.
Administrative Science Quarterly 38, 408–437 (1993)

8. Markham, S.E., Markham, I.S.: Self-management and self-leadership reexamined: A lev-
els-of-analysis perspective. The Leadership Quarterly 6, 343–359 (1995)

9. Trist, E.: The evolution of socio-technical systems: a conceptual framework and an action
research program. Ontario Quality of Working Life Centre, Ontario (1981)

10. Guzzo, R.A., Dickson, M.W.: Teams in organizations: Recent research on performance
and effectiveness. Annual Review of Psychology 47, 307–338 (1996)

11. Parker, S., Wall, T., Jackson, P.: That’s Not My Job: Developing Flexible Employee Work
Orientations. Academy of Management Journal 40, 899–929 (1997)

12. Volberda, H.W., Lewin, A.L.: Co-evolutionary Dynamics Within and Between Firms:
From Evolution to Co-evolution. The Journal of management studies 40, 2111 (2003)

13. Tata, J., Prasad, S.: Team Self-management, Organizational Structure, and Judgments of
Team Effectiveness. Journal of Managerial Issues 16, 248–265 (2004)

14. Deci, E., Eghrari, H., Patrick, B., Leone, D.: Facilitating Internalization: The Self-
Determination Theory Perspective. Journal of Personality 62, 119–142 (1994)

15. Baard, P., Deci, E., Ryan, R.: Intrinsic Need Satisfaction: A Motivational Basis of Per-
formance and Weil-Being in Two Work Settings 1. Journal of Applied Social Psychol-
ogy 34, 2045–2068 (2004)

16. Deci, E., Ryan, R., Gagne, M., Leone, D., Usunov, J., Kornazheva, B.: Need Satisfaction,
Motivation, and Well-Being in the Work Organizations of a Former Eastern Bloc Country:
A Cross-Cultural Study of Self-Determination. Personality and Social Psychology Bulle-
tin 27, 930 (2001)

17. Gagne, M., Koestner, R., Zuckerman, M.: Facilitating Acceptance of Organizational
Change: The Importance of Self-Determination 1. Journal of Applied Social Psychol-
ogy 30, 1843–1852 (2000)

18. Amabile, T.: The social psychology of creativity: A componential conceptualization. Jour-
nal of Personality and Social Psychology 45, 357–376 (1983)

19. Grolnick, W., Ryan, R.: Autonomy in children’s learning: An experimental and individual
difference investigation. Journal of Personality and Social Psychology 52, 890–898 (1987)

20. Benware, C., Deci, E.: Quality of Learning With an Active Versus Passive Motivational
Set. American Educational Research Journal 21, 755 (1984)

21. Kirkman, B.L., Rosen, B.: Beyond self-management: Antecedents and consequences of
team empowerment. Academy of Management Journal 42, 58–74 (1999)

22. Yin, R.K.: Case study research: design and methods. Sage, Thousand Oaks (2009)
23. Morgan, G.: Images of Organizations. SAGE publications, Thousand Oaks (2006)

www.manaraa.com

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 63–72, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Organizational Enablers for Agile Adoption: Learning
from GameDevCo

Jayakanth Srinivasan and Kristina Lundqvist

Mälardalen University, Box 883, 721 23 Västerås, Sweden
{jayakanth.srinivasan,kristina.lundqvist}@mdh.se

Abstract. Adopting agile methods requires an understanding of both the me-
chanics and the dynamics of value creation in software organizations. From a
mechanics perspective, successful agile adoption is about ensuring that project
stakeholders are aligned toward a common project objective, employees have
the ability to make decisions at the right level of abstraction, that there is effec-
tive project management, and an environment exists that supports individual
and group learning. The dynamics of value creation require an understanding of
organizational-level stakeholders and their value propositions, the development
of an organizational learning system, and last but not least, an effective govern-
ance strategy. This paper uses the lessons learned a case study of GameDevCo
to illustrate these organizational enablers for agile adoption.

Keywords: Agile Adoption, Case Study, Engaged Scholarship, Enablers.

1 Introduction

Software organizations are in a knowledge-intensive industry, within which they have
to deal with the rapid changes in technology, unpredictable variation in customer
values, and increasing competition for their human capital. Given that software devel-
opment is a non-routine complex undertaking requiring high levels of competence and
a flexible organizing structure, the fundamental issue for software organizations is
how to achieve a balance between control and goal orientation on one hand, and
change and flexibility on the other[1]. Teece, Pisano and Shuen [2] define dynamic
capabilities as , ‘the firm’s ability to integrate, build and reconfigure internal and
external competencies to address rapidly changing environments’. Zollo and Winter
[3], further extend this definition of dynamic capabilities as, ‘a learned and stable
pattern of collective activity through which the organization systematically generates,
and modifies its operating routines in pursuit of effectiveness’. The notions of learn-
ing, collective activity and effectiveness are important in the software context: the
activity in software organizations is organized through the use of project teams, hence
through collective activity; an effective software organization is one that can deliver
its products and services to its customers on schedule, within budget and at the high-
est quality even when operating in a changing environment.

In looking at the software services industry, Ethiraj et al. project-specific capabili-
ties and client-specific capabilities both contributed to project success [4]. They note

www.manaraa.com

64 J. Srinivasan and K. Lundqvist

that client-specific capabilities reflect the tacit knowledge of a client’s business do-
main and operating routines, and are obtained through repeated interactions with a
client across multiple projects over time; while project-management capabilities are
acquired through a deliberate and persistent investment in infrastructure and training.
Athreye’s study of the Indian software industry [5], highlighted the importance of
aligning capability development to the business model. When looking at organizations
that have been successful at generating capabilities through improvement efforts, two
stand out – Toyota in the automotive industry, and Rockwell Collins in the -aerospace
industry. While the Toyota Production System [6, 7] has been widely touted as the
source of Toyota’s competitive advantage [7], a deeper look reveals that their phi-
losophy of ‘respect for people’ [8, 9] plays an equal if not greater role in their success.
Their True North metrics [10] of human development, quality, cycle time, and
cost/productivity; in that order, highlight the importance of people in generating or-
ganizational capabilities. The use of the Lean Electronics program at Rockwell
Collins to drive continuous improvement is very well documented [11], but the true
source of their competitive advantage lies in their ability to create an effective value
proposition for people. The synergy of having an improvement program, coupled with
the ability to motivate process users to drive the effort, enables these organizations to
develop enterprise-level agility. This paper addresses the question of:

What are the organizational enablers that support the adoption of agile methods in
software enterprises?

The remainder of the paper is organized as follows: first, we present the context
within which the GameDevCo case study was carried out, followed by the analyses
across the organizational enablers of stakeholder alignment, employee employment,
group & organizational learning, and governance mechanisms. It is important to note
that these categories emerged from the analysis of the interview and observation data.
The paper concludes with a discussion of the findings, and implications for future
work.

2 Case Context

The primary focus within this paper is on GameDevCo, which was born as a startup
project that was designed and built on a university campus by developers who had a
passion for the game of poker, and deep technological expertise in all three critical
areas: server-side software, game engine, and client-side software. The game was ini-
tially designed to develop the game playing skills using ‘play’ money, but the success
of the game overall, led to the creation of a product that would allow people to buy-
into and play the actual games. The market success led to the team starting a company.
GameDevCo’s senior leadership team noticed that software was not being developed
on-time, and on-cost. To add insult to injury, the constant bug-fixes and patches were
being implemented in the ‘live environment’. As a result, they imposed a very struc-
tured development process on the team based on the heavily plan-based development
approach adopted at a major telecommunications company. The structured develop-
ment process really did not improve organization performance, and given that the
development team was improving the product incrementally, GameDevCo’s senior

www.manaraa.com

 Organizational Enablers for Agile Adoption: Learning from GameDevCo 65

leaders felt that the developers should be provided with the autonomy needed to make
the decisions needed, while ensuring that some formal product data management was
being carried out. Five years after their inception in 2000, they decided to adopt Scrum
as the development methodology of choice.

Table 1. Interviews at GameDevCo

Senior Leader Business Unit Head (3), Senior Architect (1), Testing Head (1)
Middle Manager Scrum Masters (5), Senior Designers (2), Product Owner (1)
Workforce Developers (4), QA (2), Graphic Designers (3)

As part of the research for this paper, in late 2007, we first interviewed 22 people
(including three teams) who spanned the organization hierarchy from senior leaders to
developers and testers, as shown in Table 1. We followed up with a second round of
interviews in mid 2008, followed with a meeting of the senior leadership team in Jan
2009, to increase the trustworthiness of the analysis.

3 Stakeholder Alignment

From the perspective of achieving stakeholder alignment in software projects, the best
known model is the win-win spiral model [14]. As Boehm points out [15], the empha-
sis of stakeholder commitment to shared systems objectives provides the organization
with a collaborative framework for helping people and organizations cope with
change. The importance of software organizations managing the needs of their key
stakeholders has been emphasized at the project level from the perspectives of archi-
tecture [16], requirements management[17], globally distributed development [18],
just to name a few. The win-win spiral model however, does not explicitly address the
organization level stakeholders. An extension to the model used in this paper, ac-
counts for the fact that software organizations have to necessarily take a bi-level per-
spective, addressing the needs of senior leadership, and customers (both internal and
external) at the organizational level, and meeting the needs of customers, developers,
architects, users and maintainers at the project level. In effect, the model views a
software enterprise as a portfolio of projects, that each has a set of stakeholders, who
are often distinct from the organizational-level stakeholders.

As GameDevCo transitioned from start-up mode to a full-fledged product com-
pany, most of the founders left the organization, and new senior leadership was
brought in, creating the first set of misalignments between project-stakeholders and
senior leadership. The recent acquisition of GameDevCo’s by a global conglomerate
has further resulted in misalignments with their corporate customers. At the root
causes of the misalignments are: a limited understanding of GameDevCo’s product
(and by extension, the market they serve), the lack of visibility into GameDevCo’s
processes, and corporate ownership of the high-level product roadmap. This transition
also resulted in a more hierarchical organization structure, wherein more layers were
inserted between the project teams involved in the product lifecycle (design, devel-
opment and sustainment), and their customers. At the organizational level, even
within GameDevCo, there are misalignments between the various business units.

www.manaraa.com

66 J. Srinivasan and K. Lundqvist

A case in point is the lack of alignment between the Infrastructure & Support (I&S)
business unit, and the Developmental Studio (DS) that develops the games. The lack
of alignment here arises from the absence of a structured release process for product
upgrades – as a result I&S has to constantly juggle patches, and managing version
control, straining an already limited staff. At the project-level, there is a strong align-
ment between the customers and developers in DS, as the developers have a strong
passion for the game for which they developed the product. The misalignment with
the architects/product owners is driven by shift in emphasis from ‘new technology
development’ to ‘business value’. As the head of DS noted for a product that has been
in existence for almost six years,

We only wrote our first business story six months ago.

The lack of alignment between the developers/maintainers and the architects is driven
by both the constant churn in the development process as well as the perception of the
effectiveness of the architect/product owner. As one of the developers in the first
generation product noted:

The people designing the new system created the mess in the first product – over the
last two years, we have had to constantly redesign and refine the product while keep-
ing it in service – getting it to the maturity we have

The challenges faced by the maintainers, as similar to those faced by the I&S stake-
holders – they lack sufficient information to effectively support the product. Since the
adoption of SCRUM as the development methodology of choice three years ago, the
rapid execution cycle time has led to poor fidelity artifacts (when they exist). These
artifacts tend to decay rapidly, as the collective problem solving activities that are car-
ried out to resolve issues/make design changes are not captured. As one developer
noted,

We are sprinting, not doing SCRUM

The assessment of the stakeholder alignment within GameDevCo is shown in
Table 2.They have pockets of strong alignment but lack of alignment of organiza-
tional level stakeholders, has had an adverse effect on the project-stakeholders.

4 Employee Empowerment

The concept of employee empowerment appeared as part of the management vernacu-
lar in the 1980’s and rapidly became an often used, yet poorly understood concept. As
Randolph noted in 2000 [21], empowerment remains one of the most promising, yet
mystifying, concepts in business. As Conger and Kanugo note [22], there are multiple
constructs that are associated with empowerment: a relational construct at the organ-
izational level in which the principle source of power that an actor has over the
organization arises from the actor’s ability to provide some performance or resource
that is valued by the organization or the actors ability to cope with important organ-
izational contingencies or problems (as defined by Pfeffer [23]); a relational construct
at the interpersonal level often implies the leader/manager sharing power with their
subordinates [24]; and a motivation construct wherein empowerment focuses on
enabling employees.

www.manaraa.com

 Organizational Enablers for Agile Adoption: Learning from GameDevCo 67

Table 2. Stakeholder Alignment at GameDevCo

Stakeholder
Alignment

Organization-Level Stakeholders
Senior

Leadership
Customers

External Internal
GameDevCo

Project-Level Stakeholders
Customer Architect Developer Maintainer User

Legend – Strong Alignment -Weak Alignment

As Ayoma points out [25], one of the goals of agile/iterative software development

is to transition from a culture of enforcement to a culture of empowerment. In looking
at the cultural assumptions underlying the adoption of CMM-based improvement
efforts (which are predominantly used in organizations that use plan-based develop-
ment approaches), Ngwenyama and Neilsen [1] note that empowerment is implicit in
organizations that have a developmental orientation in which the focus is on human
development. From the perspective of enabling software organizations in creating
enterprise-level agility, employee empowerment is essential. People act as the pri-
mary sensemaking mechanism in software organizations, and an un-empowered em-
ployee cannot effectively be a part of creating or contributing to enterprise agility.
Empowerment is seen as a critical factor in enabling software process improvements
[26],but actually creating empowered employees is difficult [27]. Quinn and Spreitzer
[28] synthesized the literature on employee empowerment to identify four characteris-
tics of empowered people to be: a sense of self-determination (free to choose how
they do their work); a sense of meaning (care about what they are doing); a sense of
competence (confident about their ability to do the work); and a sense of impact (abil-
ity to influence their work unit). These four characteristics provide the structure that
we can use to better understand employee empowerment in GameDevCo, as shown in
Table 3.

While the adoption of agile processes in general increases the autonomy of the em-
ployee, and thereby enables them to make better project-level decisions,
GameDevCo’s adoption of SCRUM as the development approach of choice has
brought some interesting organizational issues to the forefront – primary among them,
the absence of training for contract employees, and lack of an effective tool to support
the rapid development cycle time. Their explosive growth over the last four years, has
resulted in GameDevCo’s heavy reliance on contract employees to ensure project
progress – however, these employees are not trained in the SCRUM process. As one
contract employee noted:

I have been here for a year, and I still don’t know what SCRUM is.

This problem is further exacerbated within the organization, as there is a wide-ranging
understanding of what SCRUM is, and how it should be implemented. As a result, the
nature of the day-to-day development activities is strongly influenced by the project
manager (or scrum master). As one senior project manager noted:

www.manaraa.com

68 J. Srinivasan and K. Lundqvist

We spend more time talking about what SCRUM is, and what it should be, rather than
focusing on what it should be doing for us.

This internal process diversity, coupled with a lack of an effective governance structure
has resulted in churning on the part of the employees when it comes to the develop-
ment process. Another challenge that impacts their ability to do execute day-to-day
work, is the lack of a requirements management tool that supports the rapid develop-
ment cycle time. The corporate mandated tool, was designed to support plan-based
development, and is too cumbersome to support effective situational awareness. As a
workaround to the tool, development teams started using a wiki-based tool, however,
even there, the artifacts decay rapidly. From the perspectives of meaning and compe-
tence, GameDevCo has world class technology competence, and across the board, the
development teams are passionate about the game for which they developed the prod-
uct. GameDevCo’s growth has led to a greater focus on the business of selling games,
and a perception of dilution on technology aspects of game development. This growth
has also created a more hierarchical organization that has resulted in functional silos, as
opposed to the cross-disciplinary, cross-lifecycle teams that existed in the initial phases
of their growth. This problem has been further exacerbated by the move to a common
office in a major city, which has exposed their technical staff to a larger, and in some
cases more rewarding job market. From an impact perspective, GameDevCo’s ap-
proach of using independent teams to developing the next generation product, and
sustain existing products, has resulted in frustration for the team that sustains the cur-
rent product. As one of the team members involved in sustainment noted:

There is always a ghost in the room – we don’t really know what our role is when the
next-generation product will finally be fielded.

Table 3. Employee Empowerment at GameDevCo

Empowerment
Characteristics

Self
Determination

Meaning Competence Impact

GameDevCo /
Legend – strong alignment – weak alignment

5 Group and Organizational Learning

Software development is in many ways, one of the purest forms of knowledge work.
There have been multiple studies that emphasize the importance of managing knowl-
edge [29,30] and supporting organization learning in software development [31-34].
For understanding the strategies at GameDevCo, we use the three lenses of individual
learning, group learning, and organizational learning (as shown in Table 4).

Table 4. Learning Strategies at GameDevCo

Learning Strategies Individual Group Organizational

GameDevCo Process Training
Informal Communities
of Practice, Standup
meetings, Retrospectives

University
Collaboration

www.manaraa.com

 Organizational Enablers for Agile Adoption: Learning from GameDevCo 69

GameDevCo’s focuses primarily on creating mechanisms to support individual and
group learning. Given their primary challenge of standardizing to the SCRUM proc-
ess, every member of the permanent staff went through basic training in the process.
As was noted earlier, this training was not provided to contract staff, a significant
portion of their total human capital. To support their transition efforts, they retained
an external consultant to mentor their SCRUM masters, however, the consultant left
prior to institutionalizing the knowledge, resulting in significant variation in the de-
velopment process. As one SCRUM master noted:

We spend more time arguing about what the scrum books say about the process,
rather than in trying to figure out what the process is trying to do for us

Table 5. Analysis Governance Strategies at GameDevCo

Strategic Governance Project Management
Governance
Analysis

Business
Model

Alignment

Project Portfolio
Management

Decision
Rights Policy/Process Tool

Support

GameDevCo / /

Legend – Strong practices observed – Weak or no practices observed

The growth of the organization has resulted in a separation of game development

and systems operation – further limiting the opportunities for individuals to learn
from the debugging of server related problems and the creation of release packages.
Group learning at GameDevCo currently occurs through the use of informal commu-
nities of practice that meet to share best practices and lessons learned. The challenge
however is that these communities of practice do not meet on a regular basis due to
schedule pressures. Another approach to fostering group learning is the use of retro-
spectives at the end of an iteration, which by definition are meant to provide the team
with an opportunity to reflect on both the project and the process. These meetings
however, have now become a pro-forma ritual. As one developer noted:

Our retrospect starts with the scrum master saying, What didn’t work in this sprint?
What can we improve in the process?... We look around and in 5 minutes we are done

One of the points that is often made when discussing organizations that adopt agile
methods, is the large amount of tacit knowledge within the organization – i.e. organi-
zation that is resident in the heads of individuals. With GameDevCo, the challenges
arise from the lack of organizational infrastructure to support learning, as well as the
simple fact that the organization is executing too fast to learn.

6 Systems of Governance

The notion of governance in software organizations has received little explicit focus
from the academic community until recently – a case in point being the First Workshop

www.manaraa.com

70 J. Srinivasan and K. Lundqvist

on Software Development Governance that was held as part of ICSE’08. The summary
of the workshop identifies the perceptions of 21 participants on what they believe is part
of governance process. We coded the raw data to extract four common themes of:
Bridging Strategy and Execution; Project Portfolio Management; Allocation of Decision
Rights; and Project Monitoring and Control. While the understanding of governance is
skewed to the individual’s perception based on their location in the organization and
prior experience (in current and previous organizations), there is strong consensus that
governance bridges strategic and operational aspects of software development, and it
includes some aspect of project management. Our analysis builds around the same
structure, addressing first the strategic aspect of governance, and then the day-to-day
activity of project management.

GameDevCo is in the process of figuring out how governance should be carried
out. Their original business model (which was focused on servicing individual cli-
ents), has since been expanded to services and infrastructure provision. Moreover,
their interactions with corporate headquarters appear to be ‘mandate-based’, as op-
posed to collaborative tailoring. Their transition to SCRUM placed the onus of deci-
sion making on the development teams themselves however, the corporate process for
project management is built around the traditional monitoring and control paradigm
that relies heavily on stable technology roadmaps, and a stage-gated product devel-
opment process. To further exacerbate the mismatch is the lack of a mapping between
the roles specified in the corporate project management process, and the roles used
within GameDevCo. As one senior project manager noted:

We have raised this lack of clarity on the roles multiple times, but there has been no
action taken by corporate to resolve it.

Given that the corporate office does not really understand how GameDevCo’s proc-
esses work, it becomes critical for them to have an effective project management
system. The SCRUM methodology by definition comes with an implicit project man-
agement strategy that has a strong emphasis on self-governance, with the SCRUM
masters (SMs) and Product Owners (POs) acting as the interface to senior leadership.
As discussed earlier, there is still no consensus within GameDevCo on exactly what
their implementation of SCRUM is. In addition to lack of clarity on the process itself,
there is significant heterogeneity on the ‘who’ and ‘how’ aspects of governance as
well. The reporting internal to project teams is done in terms of burn-down charts, but
the translation to the larger enterprise is unclear. Similarly, there is significant overlap
in the roles of the SMs, POs and Architects.

7 Discussion

The four organizational enablers emerged from a grounded theoretic analysis of inter-
views, observations, and archival data. The engaged scholarship approach [13],
wherein we engaged the members of GameDevCo at multiple levels, allowed us gain
a nuanced understanding of the challenges that they faced in adopting agile methods.
The approach overall of starting with an engagement mindset, and combining multi-
ple data collection methods, provides an effective means of carrying out firm level
research. Furthermore, the results are trustworthy as triangulation was carried out at

www.manaraa.com

 Organizational Enablers for Agile Adoption: Learning from GameDevCo 71

the data and theoretic levels; and both the study participants and other peers validated
the results. The next step in the research will be to determine whether the findings
apply to process improvement in non-agile contexts. From the standpoint of the
practitioner, we emphasize the need for addressing both the mechanics and the dy-
namics of agile adoption. Most organizations implicitly assume that agile practices
will automatically ensure stakeholder alignment and employee empowerment –
GameDevCo is an illustrative example of that problem. In the absence of a holistic
system, that enables learning, and implements strategic governance to enable stake-
holder alignment and create employee empowerment, agile adoption will not translate
to strategic agility, at best, it will enable production agility.

Acknowledgement

The first author would like to thank the members of GameDevCo, who generously
shared their time, and their insights during the multiple cycles of data gathering and
analysis This research was supported in part, by the Swedish Foundation for Strategic
Research (SSF), through the PROGRESS center at Mälardalen University.

References

[1] Ngwenyama, O., Nielsen, P.A.: Competing values in software process improvement: an
assumption analysis of CMM from an organizational culture perspective. IEEE Transac-
tions on Engineering Management 50(1), 100–112 (2003)

[2] Teece, D.J., Pisano, G., Shuen, A.M.Y.: Dynamic Capabilities And Strategic Manage-
ment. Strategic Management Journal 18(7), 509–533 (1997)

[3] Zollo, M., Winter, S.G.: Deliberate Learning and the Evolution of Dynamic Capabilities.
Organization Science 13(3), 339–351 (2002)

[4] Ethiraj, S.K., Kale, P., Krishnan, M.S., et al.: Where do capabilities come from and how
do they matter? A study in the software services industry. Strategic Management Jour-
nal 26(1), 25–45 (2005)

[5] Athreye, A.S.: The Indian software industry and its evolving service capability. Industrial
and Corporate Change 14(3), 393–418 (2005)

[6] Ono, T.: Toyota Production System: Beyond Large-Scale Production. Productivity Press
(1988)

[7] Spear, S., Bowen, H.K.: Decoding the DNA of the Toyota Production System. Harvard
Business Review 77, 96–108 (1999)

[8] Sugimori, Y., Kusunoki, K., Cho, F., et al.: Toyota production system and Kanban system
Materialization of just-in-time and respect-for-human system. International Journal of
Production Research 15(6), 553–564 (1977)

[9] Liker, J.K., Meier, D.: Toyota Talent: Developing Your People the Toyota Way.
McGraw-Hill, New York (2007)

[10] Morgan, J.M., Liker, J.K.: The Toyota Product Development System: Integrating People,
Process, and Technology. Productivity Press (2006)

[11] Roth, G., Labedz, C.: Lean Enterprise Change Case Study: Rockwell Collins. MIT, Cam-
bridge (2006)

[12] Heeks, R., Krishna, S., Nicholson, B., et al.: Synching or Sinking: Global Software Out-
sourcing Relationships (2001)

www.manaraa.com

72 J. Srinivasan and K. Lundqvist

[13] Van de Ven, A.H.: Engaged Scholarship: A Guide for Organizational and Social Re-
search. Oxford University Press, USA (2007)

[14] Boehm, B., Bose, P.: A collaborative spiral software process model based on Theory W,
pp. 59–68

[15] Boehm, B.: Anchoring the software process. IEEE Software 13(4), 73–82 (1996)
[16] Clements, P., Garlan, D., Little, R., et al.: Documenting software architectures: views and

beyond, pp. 740–741
[17] Damian, D.: Stakeholders in Global Requirements Engineering: Lessons Learned from

Practice. IEEE SOFTWARE, 21–27 (2007)
[18] Damian, D.E., Zowghi, D.: The impact of stakeholders’ geographical distribution on

managing requirements in a multi-site organization, pp. 319–328
[19] Beck, K.: Extreme programming explained: embrace change. Addison-Wesley Longman

Publishing Co., Inc., Boston (1999)
[20] Boehm, B., Turner, R.: Using Risk to Balance Agile and Plan-Driven Methods. Com-

puter, 57–66 (2003)
[21] Randolph, W.A.: Re-thinking empowerment: Why is it so hard to achieve? Organiza-

tional Dynamics 29(2), 94–107 (2000)
[22] Conger, J.A., Kanungo, R.N.: The empowerment process: integrating theory and practice.

Academy of Management Review 13(3), 471–482 (1988)
[23] Pfeffer, J.: Organizations and Organization Theory, Cambridge, MA (1982)
[24] Burke, W.: Leadership as empowering others. Executive power, 51–77 (1986)
[25] Aoyama, M.: Web-based Agile software development. IEEE Software 15(6), 56–65

(1998)
[26] Dyba, T.: An Instrument for Measuring the Key Factors of Success in Software Process

Improvement. Empirical Software Engineering 5(4), 357–390 (2000)
[27] Baddoo, N., Hall, T.: Motivators of Software Process Improvement: an analysis of practi-

tioners’ views. The Journal of Systems & Software 62(2), 85–96 (2002)
[28] Quinn, R., Spreitzer, G.: The road to empowerment: seven questions every leader should

answer. Organisational Dynamics 26(2), 37–50 (1997)
[29] Ashforth, B.E.: The experience of powerlessness in organizations. Organizational Behav-

ior and Human Decision Processes 43(2), 207–242 (1989)
[30] Rus, I., Lindvall, M.: Knowledge Management in Software Engineering. IEEE SOFT-

WARE, 26–38 (2002)
[31] Basili, V.R., Caldiera, G., Rombach, H.D.: Experience Factory. Encyclopedia of Software

Engineering 1, 469–476 (1994)
[32] Ruhe, G., Bomarius, F.: Learning software organizations. Springer, New York (2000)
[33] Schneider, K., von Hunnius, J.P., Basili, V.R.: Experience in Implementing a Learning

Software Organization. IEEE SOFTWARE, 46–49 (2002)
[34] Althoff, K.D., Bomarius, F., Tautz, C.: Knowledge Management for Building Learning

Software Organizations. Information Systems Frontiers 2(3), 349–367 (2000)
[35] Dyba, T.: Improvisation in small software organizations. IEEE Software 17(5), 82–87

(2000)
[36] Sawyer, S., Guinan, P.J.: Software development: Processes and performance. IBM Sys-

tems Journal 37(4), 552–569 (1998)

www.manaraa.com

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 73–82, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Migrating Defect Management from Waterfall to Agile
Software Development in a Large-Scale Multi-site

Organization: A Case Study

Kirsi Korhonen

Nokia Siemens Networks, Hatanpäänvaltatie 30, 33100 Tampere, Finland
kirsi.korhonen@nsn.com

Abstract. Defect management practices are considered an important part of tra-
ditional software development. While embracing agile methods, software de-
velopment organizations have realized that defects still do exist and they must
be managed. Therefore defect management practices should be migrated as
well, but current instructions for such a change are fragmented or incomplete.
We studied three software development organizations to find out what are the
main problems to consider in defect management when migrating from water-
fall to agile. We identified five issues related to process, tools and metrics in a
multi-site organization. This paper proposes action items to deal with these is-
sues during the agile migration planning activities.

Keywords: defect management, agile adoption, distributed development.

1 Introduction

Changing the development model from traditional waterfall towards agile methods is
a challenge to any organization [18], [19], [20]. When software development is also
distributed, it brings new challenges as it seems to be in contradiction with one of the
success factors of agile development – the development should preferably take place
in one location, meaning that people are physically located in the same room [21].

Successful transformations from traditional to agile software development have
been reported [17], which encourages organizations to take agile methods into use. In
addition, frameworks [15], [16] have been designed to guide organizations in the
migration process. These include lists of possible challenges for successful agile
adoption, such as distributed development [19]. One part of the migration process is
selecting appropriate agile methods, for example, taking suitable defect related met-
rics into use [15], [24]. Still further studies in the field are needed on how defect man-
agement practices should be revised when adopting agile methods, especially in a
multi-site organization.

The goal of this study was to analyze the problems of defect management when a
globally distributed organization was migrating from traditional software develop-
ment to agile. This included finding answers to what changes, if any, are needed for
defect related metrics, processes and fault reporting tools. We also wanted to find out
what additional challenges arise from distributed development to the adoption of agile
defect management.

www.manaraa.com

74 K. Korhonen

In this research we studied two large and one medium-sized globally distributed
telecommunications software development organizations, which migrated from tradi-
tional development to agile. The data was collected by analyzing the project docu-
mentation and defect data, and by interviewing the key persons.

The results indicate that defect management has to be carefully planned when a
large-scale organization is migrating to agile. In particular, the following recommen-
dations should be considered: 1. Specify faults to be reported. 2. Create practices for
prioritizing between fault fixing and feature development during a sprint. 3. Evaluate
the appropriateness of the current fault reporting tool and related practices. 4. Analyze
what defect management metrics should be used in agile. 5. Evaluate the multi-site
development impact on defect management. .

This paper is organized as follows: Section 2 provides background information,
and the research setup is described in Section 3. The empirical results are presented in
Section 4, and analyzed in Section 5. The paper is concluded with final remarks.

2 Background

In this section we first describe the traditional defect management process and related
challenges in distributed software development. Next we discuss agile defect man-
agement, and adoption of agile methodologies.

2.1 Traditional Defect Management

The main goal of defect management is to increase the software quality by finding
and fixing defects as early as possible. Fenton [11] describes software defects to be
both failures in the required behavior of the system, and faults in the software product
caused by a human error. In order to systematically investigate the defects and pro-
vide corrections for them, there must be information recorded for each defect in a
reporting tool [11].

The basic defect management process includes defect prevention, defect discovery
and resolution, defect causal analysis and process improvement [10]. There are also
other models available e.g. [6], [7], and practical instructions for establishing a defect
management process in an organization [9]. The metrics in use should be suitable for
defect management [11], and there are examples from industry [7], [8], [13] showing
that improving the defect management process improves software quality.

2.2 Multi-site Defect Management

Industrial studies report challenges in traditional software development in a multi-site
environment, such as coordination difficulties [2] and delays in cross-site work com-
pared to same site work [3]. Impacts on defect management can be, for example,
delays in getting the fixes in time, or miscommunication of the importance of a cer-
tain defect. Proposed solutions include improving the tool usage [12], negotiation
practices [5], implementing an organization-wide defect management process [10]
and using quality metrics to support the defect management process [13].

www.manaraa.com

 Migrating Defect Management from Waterfall to Agile Software Development 75

2.3 Defect Management in Agile Software Development

One agile viewpoint proposes that defects are seen as waste [21]. Defects should be
fixed as soon as they are found and therefore, reporting the defects with a tool should
not even be required. When a Scrum [1] team is co-located, and the team members
can work together in the same room next to a shared flipchart, this may not be an
issue. However, in a distributed organization the teams are working in different
physical locations, so there may be communication problems as well as cultural dif-
ferences. These have brought up a need for more formal communication between
teams than agile method proponents originally proposed [20].

Additionally, if the system is old, the legacy code base is likely to have an un-
known number of defects. Therefore, a zero fault tolerance may not even be possible.
Consequently, the faults need to be managed, and there are recent reports on fault
quality metrics in agile development [22] and fault prediction models [23].

Research results [17], [20] suggest that agile methods, such as pair programming,
automated tests and continuous integration, help to improve product quality and re-
duce the number of faults. However, these results also show that although the number
of faults has decreased, faults still need to be handled formally.

2.4 Adopting Agile Methodologies

In this section we briefly review and discuss defect management topics from agile
transformation studies. In these studies, defect management is not discussed as a sepa-
rate topic, but guidelines and experiences are fragmented over several documents.

Success stories of adopting agile methodologies, such as Primavera [17], highlight
the benefits of the transition to agile development, but also give examples of possible
challenges. At Primavera the organization was able to provide their customers with
higher quality release, but a defect management problem in the beginning was that the
development features were prioritized over fault fixes by the scrum teams. In order to
fix all the faults, they needed to dedicate one full sprint in the end just for fixing the
bugs that were left unfixed earlier.

Cohn and Ford [19] describe common pitfalls in migrating to agile and effective
approaches for making the change. According to the study, distributed development
proved to be challenging, and should not be used during the first two or three months
after initiating an agile process. Further, Misra et al. [16] mention distributed devel-
opment on their list of challenges for successful agile transition.

In Primavera [17] the stakeholders would have required a better picture of the pro-
gress, and burn down charts alone were not seen as a sufficient source of information.
Accordingly, Cohn and Ford [19] propose that management still requires progress
status reports. A typical Scrum status report including a list of key dates and metrics,
such as defect inflow, would be satisfactory for decision making [19].

There are also structured approaches available to guide organizations in taking the
agile practices into use. Sidky and Arthur [15] introduce a 4-stage process framework
which includes an assessment of organizational readiness for agile transformation and
identifying the set of agile practices and tools to be taken into use. Also Nerur et al. [24]
emphasize that tools play a critical role and organizations planning to adopt agile should

www.manaraa.com

76 K. Korhonen

invest in tools that support rapid iterative development. However, neither of these stud-
ies discusses migrating fault management tools or practices as a separate topic.

The research material introduced in this section proposes that when adapting to agile
methodologies, topics such as distributed development, progress reporting and tools
should be considered. As these are handled separately in the materials and not from
defect management point of view, further research is needed with field studies to assess
what kind of defect management practices are needed for adopting agile development.

3 Research Setup

This paper reports a case study [14] in which three multi-site organizations were stud-
ied in a real software development environment. This section gives an overview of the
organizations, research methods and the data collection process.

3.1 Research Context

The organizations were selected in this research to represent different combinations of
size and experience in applying agile practices. The context of the organizations was
similar: experts working globally on different sites to develop software in the tele-
communications domain. Organizations 1 and 2 were fully agile. The third organiza-
tion had waterfall practices still in use on the main project level, while subprojects
were agile. This mixed approach during transformation was used because the project
schedule was tight and there had not been enough time to transform all the main
project level criteria and processes to agile. Nevertheless it was still seen beneficial to
have the subprojects in agile mode. Organization 3 results were collected from the
whole project. Table 1 summarizes the main characteristics of the organizations.

Table 1. Main characteristics of the study organizations

 Organization 1 Organization 2 Organization 3
Size of the organization Large

(>150 people)
Medium
(50-150 people)

Large
(>150 people)

Involved countries 3 2 5
New or legacy software? New Legacy Legacy
Years of agile practice 3 5 0.5
Number of agile releases <5 <10 1

3.2 Research Methods and Data Collection

Triangulation [4] was used to get a good overview of the data by verifying the results
with three different methods of data collection. We analyzed qualitative data in the
project documentation and by interviewing key persons. Additionally, we collected
quantitative fault data from each project.

The project documentation was first analyzed to get an overview of what defect
management practices there were in place. The analyzed documentation included the
project plan, project quality plan, fault related instructions and fault metric reports.

www.manaraa.com

 Migrating Defect Management from Waterfall to Agile Software Development 77

The participants (project manager, quality manager, system level testing manager
and a scrum team member) were selected for the interview to represent different
viewpoints of the project. Project manager (later referred to as PM) has the overall
responsibility for the project; therefore he needs to have enough information on e.g.
fault status for decision making. Quality manager (QM) defines the defect related
quality metrics and guidelines for the project organization. The system level testing
manager (SLT) is working with different teams over different sites in the organization
and also needs to provide progress data to the project management. The scrum team
member (STM) has an insight to the work within one team and how the defect man-
agement processes and tools support the daily activities.

Data was collected from individual people and focus groups with semi-structured
interviews. The questions asked in the interviews were related to problems met during
migration, problems caused by distributed development, reasons why some defect
management practices worked or did not work, possible new practices developed for
agile defect management, and possible requirements for the defect reporting tools.
Due to the qualitative nature of the answers, no separate statistical analysis was done.

Quantitative fault data includes initial analysis of the collected defect records. De-
fect data was collected weekly from the fault reporting tool database during the latest
software development project from each organization.

4 Empirical Results

In this section we present the results from the documentation study and interviews as
well as the initial analysis of the defect data.

4.1 Qualitative Results

In this section the qualitative results are grouped into four categories. First we discuss
about the changes to defect reporting process and defect metrics. Next we talk about
the fault reporting tools, and finally discuss problems in agile defect management due
to the multi-site organization. Based on the documentation review, basic defect man-
agement practices were used in all organizations (table 2).

Defect Management Process. In organization 3 there was a common misunderstand-
ing on different levels that, while in agile, there is no need to report any faults at all
with fault reporting tools. Similarly, the QM and STM of organization 1 commented
that not all faults were reported to the tool. PMs and QMs wanted to have the faults
reported to make the progress visible, but the teams were reluctant to report faults.
This created a conflict between management expectations and Scrum team practices.
To improve the situation, both organizations produced guidelines (by the QM) on
what faults should be reported in the tool. These included e.g. faults between the
teams and faults transferred from one sprint to another.

In organization 2, the fault reporting tool was used as a fault backlog. Fault classi-
fication in the tool to critical, major and minor gave priority for the faults, and a
Scrum team member could work on any of the reported faults on their team’s devel-
opment responsibility. The SLT mentioned that this motivated people to report and fix

www.manaraa.com

78 K. Korhonen

faults, even though it was slightly confusing to have two separate backlogs, one for
faults and one for features.

All organizations reported that it had been difficult to find the balance between fea-
ture priorities, program schedule and quality requirements. According to agile process
definitions [1], [21], quality, and therefore fault fixing, is the first priority, and feature
development comes second. In practice, implementing new features was seen as more
important during the sprint than fixing minor bugs, so that bugs were transferred to
the next sprint in all organizations. Organization 2 had taken this even further. First
sprints were reserved mainly for development, and a few sprints in the end were re-
served just for fault corrections to stabilize the system

Table 2. Main results from the documentation study

Fault Reporting Tool. None of the organizations replaced their fault reporting tool
with a new tool during agile migration. All organizations had company-wide report-
ing systems in place, and it was not possible to change it. Interviews revealed that
using the existing tools helped the communication between the teams as the format of
the data in the reporting tool was familiar.

However, there were proposals about how the tool should be improved to better fit
the agile way of working. According to the TMs and SLTs, the tool should be more
flexible than the current tool and it should be easier and faster to use when reporting a
fault. According to the STM from organization 3, there were too many mandatory
data fields for each fault. The SLT from organization 1 commented that some of the
tool instructions were updated in response to changed information needs.

Metrics. According to the QMs, the number of open faults was the key metric in their
organizations with two differences compared to the waterfall metric. Instead of meas-
uring the number of open faults only at major milestones, in agile it was measured
after each sprint. The second change was in the target level setting. In waterfall, the
number of open faults was generally higher, and targets were defined for each subpro-
ject separately. In the agile mode, the expectation was that there would not be that

 Organization 1 Organization 2 Organization 3
Milestone critical
defect criteria

No critical faults
accepted. Project level
target for critical and
major faults, minor
fault targets for
components.

No critical and
major faults
accepted. Project
level target for
critical, major and
minor faults

No critical faults
accepted at milestone.
Project level target for
critical faults. Major
and minor fault targets
for subprojects.

Sprint exit defect
criteria

No critical or major
defects accepted.

No critical or major
defects accepted.

No critical or major
defects accepted.

Other defect
related metrics

Fault closing speed Cumulative open
and closed faults

Fault closing speed
Cumulative open faults

Status delivery Once a week Three times a week Five times a week
Defect
management
process
description.

Part of the quality
management
documentation.

Part of the fault
reporting tool
instructions.

Separate fault
management process
description.

www.manaraa.com

 Migrating Defect Management from Waterfall to Agile Software Development 79

many faults, so target levels could be set on project level. Organization-specific target
settings had evolved along with gained experience (Table 2).

All organizations provided fault status reports weekly with a slight difference in
delivery intervals (Table 2). In organization 3 the fault status report format was taken
as such from the waterfall model. There were already further development ideas, for
example, the STM suggested that follow-up should be feature-based.

Multi-Site Organization. A general comment from all organizations was that intro-
ducing agile did not bring any new multi-site problems to their defect management.
The same problems still existed as with the waterfall development model: delays in
communication and long response times in fixing and verifying the faults between the
teams. The SLT from organization 2 mentioned a change that instant messaging was
introduced to improve the communication between the teams.

4.2 Analysis of the Defect Data

Defect data was collected weekly directly from the fault reporting tools. Figure 1
presents the number of open defects over time by organizations. The measurement
period was divided into three phases: development, final testing and fault fixing. The
development phase consists of content development sprints. During the final testing
phase the testing was done for the whole product, and the fault fixing phase contained
fault correction and verification tasks. Each phase length was at least one sprint.

In organization 1 the graph of open defects has only small variation during devel-
opment sprints. This is to be expected in agile software development, as the faults are
to be fixed as soon as they are found [21]. The graph was giving a too positive mes-
sage, and the high peek during final testing was not anticipated. To stabilize the sys-
tem, an extra fault fixing sprint was scheduled.

Fig. 1. Open faults index (% of max number of open faults) from Organizations 1, 2 and 3

In organization 2 the number of open faults was at highest during the development
sprints and after that it steadily decreased sprint after sprint. The graph indicates that
defects were reported, and the defect management practices, such as transferring mi-
nor bug fixes and pre-scheduling fault correction sprints, supported the work.

From the graph of organization 3 it can be seen that the agile transition did not yet
have a major impact on the defect management, as the number of open faults was
heavily increasing during the development sprints. This can be explained by inexperi-
ence with working in agile mode as the transition was still ongoing.

www.manaraa.com

80 K. Korhonen

5 Discussion

The analysis of the results revealed several problems. Fault reporting and correction
prioritization was not clear in the scrum teams. Metrics needed fine-tuning as well as
the fault reporting tool practices and communication between the different locations.

If there is no agreed defect management process, it can cause problems [11]. We
noticed that in defect management migration to agile, unclarity about which faults still
need to be reported, can cause confusion. In consequence, communication between
teams can suffer, defect data is unreliable and it cannot be used for reliable progress
follow-up. Guidelines on what faults need to be reported help the situation. Addition-
ally, the fault reporting tool can be introduced as a fault backlog.

Interviewees in our study reported that it was difficult to prioritize between the
fault corrections and feature development during one sprint due to pressure from the
different stakeholders. The same problem was also seen at Primavera [17]. However,
our study revealed that a controlled way to manage this was to allow minor class fault
fixes to be transferred to the next sprint to give more time for feature development. To
handle these fault fixes properly and ensure the quality, one or more separate fault
fixing sprints should be planned in the end to stabilize the software.

An agile adoption study [24] proposes to evaluate the appropriateness of the tools
for agile. According to our study, this should cover not only the fault reporting tools
but also the tool related practices, such as what data is filled in which field, what
fields are mandatory and what kinds of reports are generated based on the data. It was
considered useful that the tool was not changed in agile, because it made communica-
tion easier as everybody was already familiar with how to use it.

Our study showed that the defect metrics can be reused from the waterfall process,
but they need to be modified to support the agile development. For example, the
number of open defects should be followed up during each sprint and on the project
level to get the overall picture. Also the target setting should be revised.

Table 3. Problem areas and proposed solutions

Problem area Proposed solution practices
What faults need to be
reported?

Create guidelines on what faults need to be reported.
Introduce fault reporting tool as a fault backlog.

How to prioritize fault
fixing and feature
development during
sprint?

Establish a common process how to prioritize between fault fixing
and feature development.
Allow minor fault fixes to be transferred to next sprint.
Schedule fault fixing sprints.

Should the existing
fault reporting tool be
used?

Evaluate the appropriateness of the current tool and tool related
practices.
Create common guidelines on how to use the tool in agile.

What metrics to be
used in agile?

Evaluate the metrics used in waterfall, decide which ones can be used
in agile and redefine target levels.
Follow up on sprint level.

How to manage
distributed defect
management?

If the organization is not familiar with distributed development, get
familiar with agile first.
If development is already done in multiple locations, evaluate the
defect management communication practices.

www.manaraa.com

 Migrating Defect Management from Waterfall to Agile Software Development 81

Agile transformation guidelines [16],[19] mention that distributed development is a
challenge in agile transformation. This might be the case also for defect management
migration in organizations which are unfamiliar with distributed development. But
according to our study, if an organization is already doing software development in a
distributed environment, agile development as such does not bring any new multi-site
challenges to defect management. In such cases the cultural differences, communica-
tion issues, and practices of software integration are usually sorted out already before
the migration. However, timely communication is essential because of short devel-
opment sprints, and needs special attention also in the agile working mode.

As an outcome of the analysis, five problem areas were identified. These problem
areas and proposed action items to address them during the migration from waterfall
to agile are presented in Table 3.

6 Conclusions

The contribution of this paper lies in providing empirical evidence on how adopting
agile methods affects defect management. There are case examples in previous re-
search of successfully adopting agile practices in organizations, and frameworks to
guide in the transformation process. In this paper the agile adoption is analyzed from
a defect management point of view by collecting experiences from three organizations
about the effects of agile adoption on the fault management process, tools, metrics
and multi-site challenges.

Based on the results, five problem areas were identified, and the proposed actions
are respectively 1) create guidelines on what faults need to be reported, 2) evaluate
the appropriateness of the fault reporting tool and related practices, 3) establish a
common process how to prioritize between fault fixing and feature development, 4)
select the metrics to be used in agile, and 5) make sure that communication practices
are well established between distributed teams.

In future research we will focus on evaluating further the results of agile transfor-
mation measured by defect data and collect requirements for an agile fault reporting
tool.

Acknowledgements. The author thanks Kai Koskimies, Pekka Abrahamsson, Hannu
Korhonen, Erik Hiltunen and Maria Lahti for their comments and insights.

References

1. Schwaber, K., Beedle, M.: Agile software development with Scrum. Prentice Hall, Engle-
wood Cliffs (2002)

2. Herbsleb, J.D., Grinter, R.E.: Splitting the organization and integrating the code: Conway’s
law revisited. In: Proceedings of International Conference on Software Engineering,
pp. 85–95 (1999)

3. Herbsleb, J.D., Mockus, A., Finholt, T.A., Grinter, R.E.: Distance, dependencies, and de-
lay in a global collaboration. In: Proceedings of the ACM Conference on Computer Sup-
ported Cooperative Work, pp. 319–328. ACM Press, New York (2000)

www.manaraa.com

82 K. Korhonen

4. Jick, T.D.: Mixing Qualitative and Quantitative Methods: Triangulation in Action. Admin-
istrative Science Quarterly 24(4), 602–611 (1979)

5. Sandusky, R.J., Gasser, L.: Negotiation and the coordination of information and activity in
distributed software problem management. In: Proceedings of international ACM SIG-
GROUP conference on supporting group work, pp. 187–196. ACM Press, USA (2005)

6. Florac, W.: Software quality measurement a framework for counting problems and defects.
Technical Report CMU/SEI-92-TR-22 (1992)

7. Mays, R.G., Jones, C.L., Holloway, G.J., Studinski, D.P.: Experiences with defect preven-
tion. IBM Syst. J. 29(1), 4–32 (1990)

8. Daskalantonakis, M.K.: A Practical View of Software Measurement and Implementation Ex-
periences Within Motorola. IEEE Transactions on Software Engineering 18(11), 998–1010
(1992)

9. Quality Assurance Institute: Establishing a Software Defect Management Process. Re-
search report number 8 (1995)

10. Jäntti, M.: Difficulties in Establishing a defect management process: A Case Study. LNCS,
pp. 142–150. Springer, Heidelberg (2006)

11. Fenton, N.E., Pfleeger, S.L.: Software Metrics, A rigorous and practical approach. PWS
Publishing Company (1997)

12. Larsson, A.: Making sense of collaboration: the challenge of thinking together in global
design teams. In: Proceedings of the International ACM SIGGROUP Conference on Sup-
porting Group Work, pp. 153–160. ACM Press, New York (2003)

13. Korhonen, K., Salo, O.: Exploring Quality Metrics to support Defect Management Process
in Multi Site Organization – a Case Study. In: Proceedings of ISSRE (2008)

14. Yin, R.: Case Study Research: Design and Methods. Sage Publishing, Thousand Oaks
(1994)

15. Sidky, A., Arthur, J.: A disciplined approach to adopting agile practices: the agile adoption
framework. In: Innovations in Systems and Software Engineering, pp. 203–216. Springer,
Heidelberg (2007)

16. Misra, S., Kumar, U., Kumar, V., Grant, G.: The organizational changes required and the
challenges involved in adopting agile methodologies in traditional software development
organizations. In: Digital Information Management, pp. 25–28 (2006)

17. Schatz, B., Abdelshafi, I.: Primavera Gets Agile: A Succesful Transition to Agile Devel-
opment. IEEE Software 22, 36–42 (2005)

18. Lawrence, R., Yslas, B.: Three-way cultural change: Introducing agile with two non-agile
companies and a non-agile methodology. In: Proceedings of AGILE Conference (2006)

19. Cohn, M., Ford, D.: Introducing an Agile Process to an Organization. Computer 36(6),
74–78 (2003)

20. Lindvall, M., Muthig, D., Dagnino, A., Wallin, C., Stupperich, M., Kiefer, D., May, J.,
Kahkonen, T.: Agile software development in large organizations. Computer 37(12),
26–34 (2004)

21. Poppendieck, M., Poppendieck, T.: Lean Software development. Addison-Wesley, Read-
ing (2007)

22. Concas, G., DiFrancesco, M., Marchesi, M., Quaresima, R., Pinna, S.: An agile develop-
ment process and its assessment using quantitative object-oriented metrics. In: XP 9th in-
ternational conference, Ireland, pp. 83–93 (2008)

23. Catal, C., Diri, B.: A fault prediction model with limited fault data to improve test process.
In: Profes 9th international conference, Italy, pp. 244–257 (2008)

24. Nerur, S., Mahapatra, R., Mangalaraj, G.: Challenges of migrating to agile methodologies.
Communications of the ACM 48(5) (2005)

www.manaraa.com

Perceptive Agile Measurement:

New Instruments for Quantitative Studies in the
Pursuit of the Social-Psychological Effect of

Agile Practices

Chaehan So and Wolfgang Scholl

Department of Organizational and Social Psychology
Institute of Psychology, Humboldt University
Rudower Chaussee 18, 12489 Berlin, Germany

chaehan.so@gmail.com, schollwo@cms.hu-berlin.de

http://tinyurl.com/agilestudy

Summary. Rising interest on social-psychological effects of agile prac-
tices necessitate the development of appropriate measurement instru-
ments for future quantitative studies. This study has constructed such
instruments for eight agile practices, namely iteration planning, itera-
tive development, continuous integration and testing, stand-up meet-
ings, customer access, customer acceptance tests, retrospectives and
co-location.

The methodological approach followed the scale construction pro-
cess elaborated in psychological research. We applied both qualitative
methods for item generation, and quantitative methods for the analysis
of reliability and factor structure (principal factor analysis) to evaluate
critical psychometric dimensions.

Results in both qualitative and quantitative analyses indicated high
psychometric quality of all newly constructed scales. The resulting mea-
surement instruments are available in questionnaire form and ready to
be used in future scientific research for quantitative analyses of social-
psychological effects of agile practices.

Keywords: agile practices, measurement instruments, iteration plan-
ning, iterative approach, continuous integration, test-driven development,
stand-up meetings, co-location, retrospectives, customer acceptance tests,
customer access.

1 Introduction

Research has investigated agile methods since the late 1990s, while the under-
lying roots date back to the 1980s [1]. Growing interest in psychological aspects
within the agile software domain has since revealed that there is more to agile
methods than the technical and process issues, namely a vast area of human and

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 83–93, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.manaraa.com

84 C. So and W. Scholl

social aspects. A number of studies have emerged investigating various social
aspects in the complex relationship between agile practices and team interaction
[2,3].

All these studies have applied qualitative research methods and found positive
results of specific agile practices. Future research must therefore corroborate
these qualitative findings using quantitative methods. In addition, the highly
influential non-scientific consultant and practitioner literature on agile methods
is abundant with claims about positive effects on social phenomena. The question
remains whether these claims can be substantiated in quantitative studies. In
pursuit of answering such research questions through quantitative analyses, this
study aimed to develop appropriate measurement instruments.

2 Theoretical Framework

For quantitative studies on social-psychological effects, it is crucial that the
measurement of agile practices is not effected by technical tools, but from the
angle of perception. In psychology, perception is defined as the outcome of
human information processing involving encoding, storage, retention, informa-
tion retrieval, and judgment. The theoretical underpinnings of this approach
derive from the fundamental psychological mechanism that individuals’ behav-
ior and choices are more influenced by their perceptions of situations and con-
texts than by the objective factual situation [4]. In many cases of real-life work
contexts, discrepancies can occur between the technical reality (e.g. implemen-
tation quality of agile practices) and the corresponding individuals’ percep-
tions. These discrepancies are caused by the fact that perceptions are prone
to distortions through various cognitive and emotional bias effects, e.g. selective
attention or confirmation bias (i.e. the tendency to ignore facts contradictory to
prior judgement) [5].

Our selection of agile practices is by no means an attempt to present an
exhaustive coverage of agile methodology on the whole, but to establish a rep-
resentative set of agile practices commonly used in the field. Beyond coverage
of agile values and principles as delineated in the Agile Manifesto [6], this set
was intended to provide a solid basis for the process of scale construction and
validation of agile practices as described in the methods section.

Consequently, we chose to pursue the following agile practices (their core
aspects denoted in parentheses): Iteration planning (participation of all team
members), iterative development (short iterations, time-boxing, working soft-
ware), continuous integration & testing (continuous integration, test-driven de-
velopment), stand-up meetings (short, regular, focused), customer acceptance
tests (frequent, requirements verification by the customer), customer access
(ease of contact to the customer, useful feedback), retrospectives (identifica-
tion and implementation of improvement points), co-location (degree of physical
proximity).

www.manaraa.com

Perceptive Agile Measurement: New Instruments for Quantitative Studies 85

3 Method

The framework to develop measurement instruments for agile practices in this
study is derived from the methodology of scale construction that has been de-
veloped and refined by psychological research for the last 100 years.

Psychological scale construction follows several qualitative methods for item
generation and quantitative methods for the validation of established scales [7]. If
the proposed new instruments are going to be used for future meaningful analyses
in contexts of social interaction, they must undergo the scrutiny of reliability
analysis and validation. In this study, we chose internal consistency as the main
measure for reliability and analyzed convergent validity and discriminant validity
(often summarized as construct validity) by explorative factor analyses.

3.1 Sample

In this study, team members (N = 227) of 55 software development teams apply-
ing agile practices across industries were tested. The sample consisted of project
and product release teams, spread over 15 countries in America (Brazil, USA),
Europe (Austria, Belgium, Finland, France, Germany, Italy, UK, Switzerland)
and Asia (Bangladesh, India, Korea, New Zealand, Russia). Participants were
male (n = 204) and female (n = 23). Work experience in agile software devel-
opment projects was majorly distributed in the small range (62.0% with up to
1 year), considerable less in the middle range (21.9% with 1-2 years) and high
range (16.1% with 3 years or more).

Acquisition of the participants followed five sources: Personal contacts of the
author from eight years of professional experience in the software domain (mainly
agile methods), contacts through researchers in the agile and organizational
psychology domain, online newsgroups for agile methods, acquisition through
an online business network (Xing), and an article published in the IT journal
OBJEKTspektrum [8] which holds the highest subscription rate across German-
speaking countries.

3.2 Procedure

The field study was conducted through a web-based questionnaire. Participants
were assured of total anonymity by a formal data privacy policy signed by the
research institute.

The agile practices’ part of the main questionnaire was developed in three
subsequent phases, followed by the final study:

Item Generation. The main qualitative measures we applied during the item
generation and validation processes consisted of several structured and unstruc-
tured interviews with experts in the field through email, phone and face-to-face
conversations. The starting point of the questionnaire development was the work
of William Krebs who created the Shodan Adherence Survey [9] which was fur-
ther elaborated by Layman et. al [10]. The scales of this survey were composed

www.manaraa.com

86 C. So and W. Scholl

of multiple items; these items were not evaluated individually but only by a
single-item for the whole scale. Hence, the corresponding psychometric quality
indicators were not available. Consequently, we decided to use the shodan sur-
vey items solely as a start discussion basis for the solicited experts to generate
a new item pool basis. We applied qualitative procedures of item validation in-
volving that new items were added and existing items were discarded, modified,
extended or shortened, based on the expert feedback. Finally, three of the 84
items1 of the Shodan Adherence Survey were retained in our final questionnaire
version (see appendix) comprising 48 items.

Pretest 1. The first prelimenary study was conducted 19-26 June 2008 with 37
participants from 13 teams. Participants were mainly recruited from the network
of the author’s personal contacts. Feedback on the survey items, composed of
questions, misunderstandings and clarifications, were discussed and the result
integrated into the subsequent revision.

Pretest 2. The second prelimenary study was conducted 15-24 October 2008
with 44 participants. Participants were recruited through announcement in six
major online newsgroups for agile software development.

Final Study. The final study was conducted between 26 October 2008 and 31
January 2009. From the pool of 260 formally invited persons, a total of 87.3%
(N=227) in 55 software development teams completed the main questionnaire
containing 43 items about agile practices. The co-location scale (5 items) was
answered in an additional short questionnaire on project data by the technical
project managers or scrum masters.

The data collection started with 107 individuals in 21 teams. After the first
week, more than 700 practioners of agile methods, enlisted in the online busi-
ness network Xing (www.xing.com), were contacted with information about this
research study and a request to participate. From this channel, a total of 120 ad-
ditional participants could be invited, and another 33 participants from further
inquiries within the personal business network.

3.3 Optimizing Variance Explained

In pretest 1, a 5-point Likert scale format ranging from 1 (not at all) to 5 (totally)
was used. To increase variance explained in the final study according to Lozano
[11], the number of response categories was extended by two additional points
to a 7-point Likert scale. In consideration of participant feedback received
from pretest 1, the response format was transformed from an extent to a fre-
quency scale ranging from 1 (never) to 7 (always), with the exception of the
co-location scale which maintained the 5-point ordinal scale ranging
from -2 (different time zones) to +2 (same room).

1 Item cit8 retained in original version and items acctest2, standup2 in adapted
versions.

www.manaraa.com

Perceptive Agile Measurement: New Instruments for Quantitative Studies 87

3.4 Content Validity

All items generated from the initial version underwent thorough review by six
experts in agile methodology and by active practitioners in software engineer-
ing throughout the first three research stages item generation, pretest 1 and
pretest 2. The experts were asked for each agile practice scale to comment on
a number of aspects including ’do the question correctly reflect the main char-
acteristics of this agile practice? ’, ’would you delete any question? ’, ’how would
you modify a question to improve its validity? ’, ’would you add any question? ’.
In addition, we solicited open feedback by means of a comment functionality in
the used survey tool. This feedback was collected and systematically compared
with prior feedback, merged and integrated into the next questionnaire version.
This whole process was repeated several times during each stage until feedback
from all involved experts converged to satisfaction with content validity.

3.5 Reliability

A scale is regarded to be reliable if there is little variance that is specific to
particular items [12]. The most wide-spread measure used in psychological re-
search for reliability is internal consistency which is equivalent to the average of
all possible combinations of split-half reliability (i.e. splitting the scale by every
possible combination of items according to the Spearman-Brown formula). The
most commonly used statistic for internal consistency is Cronbach α. Acceptable
values of α coefficients are generally regarded in the range of 0.75 and above;
yet it is important to emphasize that the factor structure must be considered as
well because the differential diagnostic value decreases the more dimensions the
scale incorporates.

3.6 Factor Structure

When testing several psychological constructs simultaneously, a psychological
test must ensure that these constructs can be measured as distinctly separate
from each other. The according standard validation method during scale con-
struction is explorative factor analysis. The goal of this method is to test for a
clear factor structure which is defined by convergent validity (items for one con-
struct load on the same factor and with high factor loadings determined by the
marking factor) and discriminant validity (items for different constructs load on
different factors and without double loadings).

In the field, agile practices are mostly applied at the same time; we thus
expected a certain correlation of the respective scales and accounted for it by
applying the oblique rotation technique direct quartimin2 which allows maximum
possible correlation in the solution as described by Gorsuch [13].

For the extraction technique, we chose to apply principal factor analysis
(PFA) in favor of principal components analysis (PCA) because PFA, as ar-
gued by Tabachnick and Fidell [14, p.633–636], is designed for studies which
hypothesize specific underlying constructs behind the empirical data.
2 Direct quartimin corresponds to direct oblimin with a gamma value of zero.

www.manaraa.com

88 C. So and W. Scholl

In order to verify whether the right number of factors (8) was extracted, we
used several criteria: First, the scree criterion indicated extraction until the 7th
factor; yet we extracted an 8th factor because of a corresponding eigenvalue
of 1.45 which clearly fulfilled the Kaiser criterion3. The most important of all
applied criteria was that factor extraction should essentially be guided by inter-
pretability of factors. In our case, all factors extracted corresponded precisely to
agile practices modeled in our data. One aggregate scale (continuous integration
& testing) spread its two subscales (continuous integration and test-driven de-
velopment) over two different factors and thus revealed to be a two-dimensional
construct. The aggregation of these two subdimensions was justified by the high
reliability of the aggregated scale (0.88).

4 Results

The following section presents the results of the statistical analysis methods
applied, namely reliability analysis and explorative factor analysis employing
principal factor extraction and direct oblimin rotation.

4.1 Reliability Analysis

First, we analyzed internal consistency coefficients on the individual level. In
order to improve our level of confidence, we tested internal consistency addi-
tionally on the group level by using aggregated individual item scores for the
calculation of alpha coefficients4.

Results (table 1) show consistently high Cronbach α coefficients for all scales
(ranging between 0.78 and 0.93 on the individual level). These high reliability
values could be replicated on the group level, showing even slightly higher values,
ranging between 0.82 and 0.95.

4.2 Principal Factor Analysis

The analysis of the factor structure following the principal factor analysis ap-
proach showed a distinctly clear factor structure for all scales5 (table 2).

The factor correlation structure revealed relatively low correlations
among components (24 of 28 correlations below .31, 4 correlations in the range
between .33 and .39). The highest correlation (.39) was between the scales ret-
rospectives and customer acceptance tests which both share occurrence after
iteration end.

3 The Kaiser criterion specifies to extract all factors with eigenvalues above 1.
4 Exception: The co-location scale was exclusively answered by project managers resp.

scrum masters, hence no aggregated group value could be calculated.
5 Co-location scale excluded from principal factor analysis because this scale was eval-

uated solely by project managers resp. scrum masters.

www.manaraa.com

Perceptive Agile Measurement: New Instruments for Quantitative Studies 89

Table 1. Reliability Analysis on Individual and Group Level

Scale # items Cronbach α Cronbach α
Indiv. Level Group Level

Iteration Planning 7 0,79 0,85
Iterative Development 7 0,79 0,83
Cont. Integr. & Testing 9 0,88 0,93
Co-Location 5 0,78 n/a
Stand-up Meetings 5 0,79 0,82
Customer Access 4 0,93 0,93
Customer Acceptance Tests 5 0,87 0,91
Retrospectives 6 0,91 0,95

Table 2. Pattern Matrix of Principal Factor Analysis

Factor
1 2 3 4 5 6 7 8

retrosp2 .87
retrosp3 .86
retrosp1 .77
retrosp4 .75
retrosp5 .68
freqretr .56
cit5 .88
cit9 .85
cit6 .84
cit8 .81
cit7 .64
cit4 .58
access3 .92
access1 .84
access2 .84
access4 .80
acctest4 .84
acctest1 .83
acctest2 .77
acctest3 .72
freqcat .40
plan2 .65
plan3 .65
plan1 .59
plan6 .47
plan4 .46
plan5 .37
plan7
standup2 .74
standup1 .69
standup3 .67
standup5 .59
standup4 .55
cit3 .84
cit2 .57
cit1 .39
iterat5 .64
iterat7 .54
iterat1 .52
iterat2 .44
iterat6 .40
iterat4 .37
iterat3 .36
Note: Factor loadings below 0.3 (<9% of variance explained) are omitted in this table

www.manaraa.com

90 C. So and W. Scholl

5 Discussion

The reliability analysis has shown that all scales possess distinctly high internal
consistency to be categorized as highly reliable according to most psychologi-
cal methodologists [12]. Moreover, since Cronbach α coefficients are consistently
in the range of 0.8 and above, the scales can also be used for causal analysis.
This is true not only for the analysis of causal structures with single or multiple
regression, but also for the analytically more sophisticated structural equation
models. Furthermore, we can assume that the high sample size of over 200 in-
dividuals yields relatively stable correlation parameters through a subject to
item ratio of above 5:1, considerably higher than the recommendation of 2:1 by
Kline [15].

The factor structure using principal factor analysis showed a clear discrimi-
nation between all scales and subscales spread over eight factors, also referred to
as simple structure. The revealed simple structure can be regarded as a result
of subsequent scale modifications based on the factor analyses after the prelim-
inary studies. For example, items of the scale iteration planning were modified
to reach unidimensionality of the scale after encountering high multicollinearity
in the first pretest.

Future research should test the constructed scales of this study in other
samples since results of reliability and factor analyses are always somewhat
prone to sample dependency. These studies should apply confirmative factor
analysis in order to validate the factor structure. The challenge to be taken
consists of the requirements of high sample size for the mathematical method
applied (structural equation modeling), and the main model fit criterion (Chi2)
which must be minimized for optimal model fit but has a positive linear de-
pendency on sample size. The solution path of choice for this dilemma consists
in reducing the number of estimation parameters to obtain more stable esti-
mations. Item parceling techniques appear to be promising approaches in this
direction.

In light of the aforementioned considerations, the decisive question emerges:
How replicable are the results of this study? To answer this question, high re-
liablity and a clear factor structure are good indicators of replicability, but we
must also look at generalizability – in this latter aspect, it seems safe to say
that this study fulfills high requirements due to high sample size and because
the sample was recruited across 15 countries, and furthermore varies from small
companies to international corporations and across a wide spectrum of indus-
tries. This variability clearly distinguishes this study from previous research
which mainly focused analysis on a single team or on several teams within the
same company; we can thus expect a comparatively higher generalizability of
this study’s outcome. Yet it will be indispensable to test the new scales in future
quantitative studies with confirmative factor analysis to reach an optimum level
of confidence.

www.manaraa.com

Perceptive Agile Measurement: New Instruments for Quantitative Studies 91

References

1. Abrahamsson, P., Warsta, J., Siponen, M.T., Ronkainen, J.: New directions on ag-
ile methods: a comparative analysis. In: ICSE 2003: Proceedings of the 25th Inter-
national Conference on Software Engineering, Washington, DC, USA, pp. 244–254.
IEEE Computer Society, Los Alamitos (2003)

2. Robinson, H., Sharp, H.: The social side of technical practices. In: Baumeister, H.,
Marchesi, M., Holcombe, W.M.L., Holcombe, M. (eds.) XP 2005. LNCS, vol. 3556,
pp. 100–108. Springer, Heidelberg (2005)

3. Whitworth, E., Biddle, R.: The social nature of agile teams. In: Proceedings AGILE
2007, Washington, DC, USA, pp. 26–36. IEEE Computer Society, Los Alamitos
(2007)

4. Thomas, J., Clark, S., Gioia, D.: Strategic sensemaking and organizational perfor-
mance: Linkages among scanning, interpretation, action, and outcomes. Academy
of Management Journal 36(2), 239–270 (1993)

5. Nickerson, R.S.: Confirmation bias: A ubiquitous phenomenon in many guises.
Review of General Psychology 2(2), 175–220 (1998)

6. Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,
M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Mar-
tin, R., Mellor, S., Schwaber, K., Sutherland, J., Thomas, D.: Manifesto for agile
software development (Online) (August 2001)

7. Giles, D.C.: Advanced Research Methods in Psychology, Routledge, East Sussex,
UK, New York, USA (2002)

8. So, C.: Teamwork in agilen Softwareteams (Teamwork in agile software develop-
ment teams). OBJEKTspektrum Schwerpunkt: Kosten und Nutzen von Vorgehens-
modellen (OBJEKTspektrum Focus: Cost and Benefit of Software Development
Processes) (1), 10 (2009)

9. Williams, L., Layman, L., Krebs, W.: Extreme programming evaluation framework
for object-oriented languages version 1.4. Technical Report TR-2004-18, North
Carolina State University, Department of Computer Science, Raleigh, NC (June
2004)

10. Layman, L., Williams, L., Cunningham, L.: Motivations and measurements in
an agile case study. Journal of Systems Architecture: the EUROMICRO Jour-
nal 52(11), 654–667 (2006)

11. Lozano, L.M., Garćıa-Cueto, E., Muñiz, J.: Effect of the number of response cat-
egories on the reliability and validity of rating scales. Methodology: European
Journal of Research Methods for the Behavioral and Social Sciences 4(2), 73–79
(2008)

12. Cortina, J.M.: What is coefficient alpha? an examination of theory and applica-
tions. Journal of Applied Psychology 78(1), 98–104 (1993)

13. Gorsuch, R.L.: Factor Analysis. Lawrence Erlbaum Associates, Hillsdale (1983)

14. Tabachnick, B.G., Fidell, L.S.: Using Multivariate Statistics, 5th edn. Allyn &
Bacon, Needham Heights (2006)

15. Kline, P.: An Easy Guide to Factor Analysis. Routledge, London (1993)

www.manaraa.com

92 C. So and W. Scholl

Appendix:
Perceptive Agile Measurement (PAM) Scales

Item
Name

Item Wording Corrected
Item-Total
Correlation

Cronbach α
if Item
Deleted

Scale: Iteration Planning

plan1 All members of the technical team actively participated during
iteration planning meetings.

0.58 0.75

plan2 All technical team members took part in defining the effort es-
timates for requirements of the current iteration.

0.62 0.75

plan3 When effort estimates differed, the technical team members dis-
cussed their underlying assumption.

0.59 0.75

plan4 All concerns from team members about reaching the iteration
goals were considered.

0.57 0.76

plan5 The effort estimates for the iteration scope items were modified
only by the technical team members.

0.41 0.78

plan6 Each developer signed up for tasks on a completely voluntary
basis.

0.55 0.76

plan7 The customer picked the priority of the requirements in the
iteration plan.

0.40 0.79

Scale: Iterative Development

iterat1 We implemented our code in short iterations. 0.53 0.76

iterat2 The team rather reduced the scope than delayed the deadline. 0.47 0.77

iterat3 When the scope could not be implemented due to constraints,
the team held active discussions on re-prioritization with the
customer on what to finish within the iteration.

0.45 0.78

iterat4 We kept the iteration deadlines. 0.50 0.77

iterat5 At the end of an iteration, we delivered a potentially shippable
product.

0.62 0.74

iterat6 The software delivered at iteration end always met quality
requirements of production code.

0.54 0.76

iterat7 Working software was the primary measure for project progress. 0.54 0.76

Scale: Continuous Integration & Testing

cit1 The team integrated continuously. 0.50 0.88

cit2 Developers had the most recent version of code available. 0.40 0.88

cit3 Code was checked in quickly to avoid code synchroniza-
tion/integration hassles...

0.39 0.88

cit4 The implemented code was written to pass the test case. 0.61 0.87

cit5 New code was written with unit tests covering its main func-
tionality.

0.79 0.85

cit6 Automated unit tests sufficiently covered all critical parts of the
production code.

0.78 0.85

cit7 For detecting bugs, test reports from automated unit tests were
systematically used to capture the bugs.

0.64 0.87

cit8 All unit tests were run and passed when a task was finished and
before checking in and integrating.

0.73 0.86

cit9 There were enough unit tests and automated system tests to
allow developers to safely change any code.

0.80 0.85

www.manaraa.com

Perceptive Agile Measurement: New Instruments for Quantitative Studies 93

Item
Name

Item Wording Corrected
Item-Total
Correlation

Cronbach α
if Item
Deleted

Scale: Stand-Up Meetings

standup1 Stand up meetings were extremely short (max. 15 minutes). 0.55 0.80

standup2 Stand up meetings were to the point, focusing only on what had
been done and needed to be done on that day.

0.73 0.74

standup3 All relevant technical issues or organizational impediments came
up in the stand up meetings.

0.64 0.77

standup4 Stand up meetings provided the quickest way to notify other
team members about problems.

0.57 0.79

standup5 When people reported problems in the stand up meetigs, team
members offered to help instantly.

0.58 0.79

Scale: Customer Access

access1 The customer was reachable. 0.84 0.90

access2 The developers could contact the customer directly or through
a customer contact person without any bureaucratical hurdles.

0.82 0.91

access3 The developers had responses from the customer in a timely
manner.

0.88 0.89

access4 The feedback from the customer was clear and clarified his
requirements or open issues to the developers.

0.80 0.92

Scale: Customer Acceptance Tests

freqcat How often did you apply customer acceptance tests? 0.48 0.88

acctest1 A requirement was not regarded as finished until its acceptance
tests (with the customer) had passed.

0.75 0.82

acctest2 Customer acceptance tests were used as the ultimate way to
verify system functionality and customer requirements.

0.77 0.82

acctest3 The customer provided a comprehensive set of test criteria for
customer acceptance.

0.67 0.84

acctest4 The customer focused primarily on customer acceptance tests
to determine what had been accomplished at the end of an it-
eration.

0.79 0.81

Scale: Retrospectives

freqretr How often did you apply retrospectives? 0.64 0.90

retrosp1 All team members actively participated in gathering lessons
learned in the retrospectives.

0.75 0.89

retrosp2 The retrospectives helped us become aware of what we did well
in the past iteration/s.

0.82 0.88

retrosp3 The retrospectives helped us become aware of what we should
improve in the upcoming iteration/s.

0.84 0.88

retrosp4 In the retrospectives (or shortly afterwards), we systematically
assigned all important points for improvement to responsible
individuals.

0.72 0.89

retrosp5 Our team followed up intensively on the progress of each
improvement point elaborated in a retrospective.

0.70 0.90

Scale: Co-Location

coloc1 Developers were located majorly in52 .76

coloc2 All members of the technical team (including QA engineers,
db admins) were located in ...

.67 .71

coloc3 Requirements engineers were located with developers in66 .71

coloc4 The project/release manager worked with the developers in50 .76

coloc5 The customer was located with the developers in49 .77

www.manaraa.com

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 94–103, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Survey of Perceptions on Knowledge Management
Schools in Agile and Traditional Software Development

Environments

Finn Olav Bjørnson1 and Torgeir Dingsøyr2

1 SINTEF Fisheries and Aquaculture
2 SINTEF ICT

NO-7465 Trondheim, Norway
{finn.o.bjornson,torgeir.dingsoyr}@sintef.no

Abstract. Knowledge management is important for software development,
whether this is done using traditional or agile methods. In an exploratory survey
on how agile and traditional companies view current practice and future impor-
tance of knowledge management approaches, we found that agile companies
seem to be more satisfied with their knowledge management approaches when
compared to traditional companies. Further, when comparing perceptions be-
tween small and medium sized companies, we found that medium sized compa-
nies are more satisfied with their knowledge management approaches than
small companies.

Keywords: Agile software development, knowledge management, scrum,
extreme programming, empirical software engineering, survey.

1 Introduction

Software development is knowledge intensive work, where employee knowledge is
critical for project success. In a competitive environment with constant technological
changes, it is a challenge to make room for reflection and analysis in the daily work to
stimulate learning.

Knowledge management is an area that has received much attention in software
engineering, for example through special issues [1], books [2], and survey articles [3,
4]. Most of the approaches are, however, focused on the needs of large enterprises.
They can afford an infrastructure for managing knowledge, like processes and tools
for rigorous analysis of experience from past projects. Thus, much of the existing
work relates to codifying knowledge in experience repositories, making overviews of
competence areas of employees and establishing separate departments in charge of
experience transfer (“experience factories”, [5]).

Many small companies have recently turned to agile development. This differs from
traditional development methods in many ways, including how knowledge is managed.
In agile processes, knowledge sharing happens through interaction – programmers
share knowledge by working together and through close relations to the customers.
Examples of specific practices aimed at knowledge transfer are pair programming in

www.manaraa.com

 A Survey of Perceptions on Knowledge Management Schools in Agile 95

Extreme Programming, reflection on practice in daily meetings in Scrum, close coop-
eration with the customer through the “planning game” and reflection on practice in
sprint retrospectives in Scrum. Nerur et al. [6] state that knowledge management is
vital to organizations, and that traditional software development has relied primarily on
explicit knowledge available in documents. Agile development, however, relies on
tacit knowledge in the heads of the team members.

The context of the research reported here is an action research project focusing on
knowledge management for small and medium-size companies. In order to focus the
research in the project, we were interested in identifying how agile and traditional
companies view current practice and future importance of knowledge management
approaches. We think this is important to see if the difference identified by research-
ers can be seen in practice, and in order to make sure that research is relevant for
practice.

In the following, we will first present previous research on knowledge management
in software engineering and in particular addressing agile software development. We
then describe how we designed our survey on knowledge management approaches in
Section 3. We present results in Section 4, and finally conclude in Section 5.

2 Knowledge Management and Agile Development

Knowledge management is a broad and interdisciplinary field. To systematize the
work in the field, Earl [7] has classified work on knowledge management into schools
(see Table 1). The schools are broadly categorised as “technocratic”, “economic” and
“behavioural”. The technocratic schools focus on information technology or man-
agement in supporting employees in knowledge-work. The economic school focuses
on how knowledge assets relates to income in organisations, and the behavioural
schools focus on orchestrating knowledge sharing in organisations.

Table 1. Earl’s schools of knowledge management

 School Focus Aim Unit

Technocratic Systems Technology Knowledge
bases

Domain Enterprise

 Cartographic Maps Knowledge
directories

Activity

 Engineering Processes Knowledge
flows

Know-how

Economic Commercial Income Knowledge
assets

Behavioural Organizational Networks Knowledge
pooling

Communities

 Spatial Space Knowledge
exchange

Place

 Strategic Mindset Knowledge
capabilities

Business

www.manaraa.com

96 F.O. Bjørnson and T. Dingsøyr

In the following, we describe five of the schools that we see as most relevant for
companies or departments developing software: The systems school focuses on codi-
fying knowledge in bases or repositories. The cartographic school makes knowledge-
able people in an organisation accessible to each other for advice, consultation, or
knowledge exchange through skills management systems. The engineering school
focuses on processes, and making descriptions of them available for employees. The
organisational school focuses on describing the use of organisational structures (net-
works) to share or pool knowledge. The spatial school focuses on designing office
space to foster knowledge sharing.

In a systematic review of empirical studies of knowledge management in software
engineering up until August 2006 [3], we found that most studies concentrated on the
engineering, systems and organizational schools of knowledge management. How-
ever, in agile software development, many practices such as using information radia-
tors and co-locating teams relate to the spatial school, and practices like scrum of
scrums relate to the organizational school.

In a systematic review of empirical studies of agile software development, Dybå
and Dingsøyr [8] identified two studies focusing on knowledge management: Bahli
and Zeid [9] examined knowledge sharing in an Extreme Programming project and a
traditional project. They found that when the Extreme Programming model was used,
the creation of tacit knowledge improved as a result of frequent contacts. Hilkka et al.
[10] studied two development organizations using methods similar to agile develop-
ment, and underline the importance of skilled team members with solid domain
knowledge: “without these kinds of persons, the chosen approach would probably
have little possibility to succeed”. The difference between traditional and agile
knowledge management, is further the focus of Melnik and Maurer [11]. They discuss
the role of conversation and social interaction in effective knowledge sharing in an
agile process. They suggest that the focus on pure codification is the principal reason
that traditional teams fail to share knowledge effectively. These studies underline the
importance of knowledge management for agile development, and acknowledge the
tacit nature of the knowledge needed for software engineering.

Parts of the works in the engineering school are relevant to agile development. In
particular the practice of conducting project retrospectives has become increasingly
popular due to agile development. This is a phenomenon that has attracted interest
from research, but in software engineering, mainly on various approaches to conduct
retrospectives or post mortem reviews [3].

Another stream of research on knowledge management for agile development envi-
ronments is works on communities of practice. This work would fit in the organiza-
tional school in Earl´s framework. The core idea in communities of practice is to get
people who are working on similar tasks to share knowledge. This can for example be
people who want to develop their skills on testing or project management who form a
forum across projects. Holz and Maurer [12] present a system to support knowledge
management in distributed teams. Kähkönen [13], explains how agile development
works in multi-team settings using communities of practice theory.

Also, we find some work related to the spatial school. Sharp et al. [14] use theory
of distributed cognition to analyze informal information flow between developers in
an Extreme Programming project, discussing both the use of information radiators (or
“walls”) and how the development team is situated in their physical environment.

www.manaraa.com

 A Survey of Perceptions on Knowledge Management Schools in Agile 97

Desouza [15] discuss how to facilitate tacit knowledge exchange, and report from a
study of a game room in a software company, which was reported to increase the
exchange of project-based tacit knowledge.

3 Research Method

In order to identify current practice and future importance of knowledge management
approaches within small and medium-size companies in a project in Belgium, Cyprus
and Norway, we designed a participative assessment, inspired by Dybå and Moe [16].
The questionnaire was to be completed by a representative on behalf of the software
development department in all 15 companies. The representatives were participating
in an improvement project, and were typically responsible for a software development
department, or working with quality assurance. The questionnaire contained one part
with background information on the company and development method used, and one
part on knowledge management approaches. For the knowledge management ap-
proaches, we used Earls schools of knowledge management, with four questions to
determine the current situations and future importance for what we saw as the five
most relevant schools: Systems, Cartographic, Engineering, Organizational and Spa-
tial. An example question is shown in Fig. 1.

Fig. 1. Four questions from the questionnaire to determine current practice and future impor-
tance of the systems school

For each question, the respondents would indicate if they (1) strongly disagreed,
(2) disagreed, (3) neither agreed nor disagreed, (4) agreed or (5) strongly agreed. Four
questions would together form a score between 1 and 5, both for the current and fu-
ture situation for each school.

The questionnaire was reviewed by researchers and practitioners before distribution,
and completed by 3 companies in Belgium, 6 in Cyprus and 6 in Norway, in total 15.

www.manaraa.com

98 F.O. Bjørnson and T. Dingsøyr

The answers were recorded in a spreadsheet, and because of the small sample, we
did not use statistical analysis, but analyzed the results using plots and tables as
shown in the next Section.

4 Results

We now describe the data sources from our survey and the major results from our
analysis.

From Table 2 we see that the companies ranged in size from seven to 250 employ-
ees. Since our main focus is on the knowledge sharing of developers we chose this
field as the major classifier for size. Thus for this paper, small companies refers to
companies with 2-18 developers, and medium companies range from 51-160 develop-
ers. With respect to development methods, the survey consisted of 8 questions to
determine the current development methods and how the participants viewed the
future degree of use of these methods in their company. We categorized self defined
agile processes and scrum as agile methods, while unspecified self defined, waterfall
and the Rational Unified Process was classified as traditional development methods.
Where both waterfall and scrum was in use, we based our classification on the degree
of use of the respective methods.

Table 2. Company background and classifications

Total
size Developers

Size
category Development method(s)

Development
category

1 80 65 Medium Waterfall and scrum Agile

2 130 51 Medium Scrum Agile

3 250 70 Medium Waterfall and scrum Agile

4 200 160 Medium Waterfall Traditional

5 7 3 Small Self defined Traditional

6 20 15 Small Waterfall Traditional

7 25 8 Small Waterfall Traditional

8 10 2 Small Waterfall Traditional

9 15 5 Small RUP Traditional

10 25 6 Small RUP Traditional

11 14 5 Small Self defined evolutionary Traditional

12 11 6 Small Scrum Agile

13 28 10 Small Waterfall and scrum Agile

14 20 6 Small Scrum Agile

15 60 18 Small RUP and Scrum Agile

We performed several comparisons of the different variables, including country, de-
velopment method and company size. The most interesting results from an agile point
of view, we believe are the comparison of development method and size, which we
report in this paper.

www.manaraa.com

 A Survey of Perceptions on Knowledge Management Schools in Agile 99

Table 3 provides an overview of the current status of the schools, the future ex-
pected importance and the gap between them, for companies using agile development
methods and companies using traditional development methods. Thus, the gap is an
indication of how important the companies believe the different schools are in order to
improve their knowledge management practices. The gap size is illustrated in Fig. 2.

Table 3. Comparison of Agile and Traditional development methods

 Schools

 Systems Cartographic Engineering Organizational Spatial

Agile Current 3,57 3,04 3,21 3,18 3,79

 Future 4,36 3,46 4,25 3,82 4,04

 Gap 0,79 0,43 1,04 0,64 0,25

Traditional Current 3,53 2,50 3,69 3,13 3,22

 Future 4,81 3,47 4,66 3,97 3,69

 Gap 1,28 0,97 0,97 0,84 0,47

As we can see from Fig. 2 the overall trend is that companies using agile develop-

ment methods seem to be more content with their knowledge sharing (i.e. lower gap).
The only exception is in the engineering school, where companies using agile meth-
ods have a slightly higher gap than the traditional.

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

Systems Cartographic Engineering Organizational Spatial

Schools

G
ap

Traditional

Agile

Fig. 2. Gap comparison between traditional and agile development methods

Going through each school in Table 3, we see that: The systems school start out
with nearly the same current level, but traditional see a larger potential in developing
this school. The cartographic school starts out with different current levels where
agile is more satisfied, and both directions want to increase the level to nearly the
same level. For the engineering school, both directions want to increase the school
about the same, but with different starting points we again see that traditional puts

www.manaraa.com

100 F.O. Bjørnson and T. Dingsøyr

more emphasis on this school. The organizational school has a close starting point and
are also close in future importance, meaning both directions put about equal emphasis
on this school. For the spatial school, the current status for agile is already above
traditional, and the future importance of this school for traditional will still put it
below the current status of agile. This means that agile puts more emphasis on the
spatial school even though the gap for agile development is lower than the gap for
traditional.

Table 4 provides the same overview as Table 3 but with the focus on small versus
medium sized companies instead. The gap difference is illustrated in Fig. 3. As we
can see from Fig. 3 the overall trend is that small companies feel a stronger need to
improve all of the schools when compared with the larger companies. They especially
perceive a need to improve the systems school, implying that larger companies usu-
ally have some sort of knowledge base in place, while smaller companies do not.

Table 4. Comparison of Small and Medium sized companies

 Schools

 Systems Cartographic Engineering Organizational Spatial

Small Current 3,27 2,58 3,45 3,20 3,32

 Future 4,57 3,31 4,48 4,02 3,73

 Gap 1,30 0,72 1,02 0,82 0,40

Medium Current 4,31 3,25 3,50 3,00 3,94

 Future 4,69 3,94 4,44 3,56 4,19

 Gap 0,38 0,69 0,94 0,56 0,25

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

Systems Cartographic Engineering Organizational Spatial

School

G
ap

Small

Medium

Fig. 3. Gap comparison between small and medium sized companies

Although the gap is similar in the cartographic school, the difference in current lev-
els indicate that larger companies see a clearer need for the cartographic school. The
engineering school is also remarkably similar in both current and future importance,

www.manaraa.com

 A Survey of Perceptions on Knowledge Management Schools in Agile 101

indicating that both small and medium sized companies place equal importance on this
school. Regarding the organizational school, we see that smaller companies place a
higher importance here, comparing the future importance for this school it might seem
like they overestimate how important it should be. Comparing spatial, we see that
medium size companies place a far higher value on this both in current and future
importance.

5 Conclusion and Further Work

We have conducted a survey amongst 15 small and medium-size software companies
in Belgium, Cyprus and Norway in order to identify how agile and traditional compa-
nies view current practice and future importance of knowledge management ap-
proaches [3].

In previous work we have theorized that companies using traditional development
methods might benefit more from the technocratic schools of knowledge manage-
ment, while those using agile might benefit more from the more behavioural schools.

This impression is partly supported by this survey. We found that the systems and
engineering school in particular are seen as having more potential by traditional com-
panies when compared to agile. The spatial school was to a larger degree perceived to
be adapted by agile than by traditional companies, but both directions seem to put the
same emphasis on the organizational school, with agile companies having come further
in the perceived implementation of this school. It is important to note however, that
while agile companies place a high importance on the spatial school, the companies
perceive that they are already using this school to a large degree, and as such the poten-
tial for improvement is perceived as low. Another important finding when comparing
traditional development methods to agile is that companies doing agile development
were overall more satisfied with their knowledge management than companies doing
traditional development.

By comparing companies with respect to size, one school proved to have a large
difference in gaps. There was a clear sentiment among small companies that the most
potential was in the systems school. The big difference between small and medium
sized companies here can be seen from the current score, where medium companies
already express a high satisfactory level of implementation of this school. This indi-
cates that as a company starts growing beyond small size they often put systems in
place to ensure that knowledge is codified. Another important finding between small
and medium sized companies is that smaller companies express a higher potential for
improvement in all schools, indicating that companies that have grown past small size
usually have a higher level of implemented knowledge management initiatives.

Our previous theory have been that agile companies will benefit more from behav-
ioural knowledge management techniques than the technocratic techniques, a finding
partly supported by the industrial actors through this survey. However as can also be
seen from this survey, the agile companies themselves believe that the most potential
for improvement lies within the technocratic schools. This might be explained
through the fact that agile methods put emphasis on the behavioural schools, and so
the need for improvement in these are seen as low compared to the schools that are
not stressed by the agile methods. The EXTRA project will seek to further research

www.manaraa.com

102 F.O. Bjørnson and T. Dingsøyr

this issue when trying out new knowledge management techniques in companies. This
will involve trying our lightweight techniques in the engineering and systems schools,
like descriptions on how to do project retrospectives, organizing project information
and designing and using knowledge repositories.

In interpreting the results from this survey we are aware that the results are from a
small subset of, and not a random sample of the relevant companies in general. Thus,
we cannot generalize beyond our sample. Some immediate concerns would relate to
the highly skewed sample in proportion of medium and small companies. In particular
the fact that only one company is medium and traditional, thus making cross infer-
ences between development methods and size difficult.

However, we see some of the findings as interesting enough to report since they
partly support previous research and our impression from working with the industry.
Future work in this area would be to conduct a survey on a larger random sample to
see if the current indications hold in general.

Acknowledgements. The EXTRA project is initiated and coordinated by the Norwe-
gian ICT association ICT Norway. The project is partly funded by Innovation Nor-
way. We are also grateful to project partners CETIC and CITEA who collaborated in
designing the questionnaire and collecting answers from companies in Belgium and
Cyprus.

References

1. Lindvall, M., Rus, I.: Knowledge Management in Software Engineering. IEEE Soft-
ware 19(3), 26–38 (2002)

2. Aurum, A., Jeffery, R., Wohlin, C., Handzic, M.: Managing Software Engineering Knowl-
edge. Springer, Berlin (2003)

3. Bjørnson, F.O., Dingsøyr, T.: Knowledge Management in Software Engineering: A Sys-
tematic Review of Studied Concepts and Research Methods Used. Information and Soft-
ware Technology 50(11), 1055–1168 (2008)

4. Dingsøyr, T., Conradi, R.: A Survey of Case Studies of the Use of Knowledge Manage-
ment in Software Engineering. International Journal of Software Engineering and Knowl-
edge Engineering 12(4), 391–414 (2002)

5. Basili, V.R., Caldiera, G., Rombach, H.D.: The Experience Factory. In: Marciniak, J.J.
(ed.) Encyclopedia of Software Engineering, pp. 469–476. John Wiley, Chichester (1994)

6. Nerur, S., Mahapatra, R., Mangalaraj, G.: Challenges of migrating to agile methodologies.
Communications of the ACM 48(5), 72–78 (2005)

7. Earl, M.: Knowledge Management Strategies: Towards a Taxonomy. Journal of Manage-
ment Information Systems 18(1) (2001)

8. Dybå, T., Dingsøyr, T.: Empirical Studies of Agile Software Development: A Systematic
Review. Information and Software Technology 50, 833–859 (2008)

9. Bahli, B., Zeid, E.S.A.: The role of knowledge creation in adopting extreme programming
model: an empirical study. In: ITI 3rd International Conference on Information and Commu-
nications Technology: Enabling Technologies for the New Knowledge Society, pp. 75–87
(2005)

10. Hilkka, M.-R., Tuure, T., Matti, R.: Is Extreme Programming Just Old Wine in New Bot-
tles: A Comparison of Two Cases. Journal of Database Management 16(4), 41–61 (2005)

www.manaraa.com

 A Survey of Perceptions on Knowledge Management Schools in Agile 103

11. Melnik, G., Maurer, F.: Direct verbal communication as a catalyst of agile knowledge shar-
ing. In: 2nd Agile Development Conference (ADC 2004), Salt Lake City, UT, pp. 21–31
(2004)

12. Holz, H., Maurer, F.: Knowledge management support for distributed agile software proc-
esses. In: Henninger, S., Maurer, F. (eds.) LSO 2003. LNCS, vol. 2640, pp. 60–80.
Springer, Heidelberg (2003)

13. Kähkönen, T.: Agile methods for large organizations - building communities of practice.
In: Agile Development Conference, pp. 2–10 (2004)

14. Sharp, H., Robinson, H., Segal, J., Furniss, D.: The role of story cards and the wall in XP
teams: a distributed cognition perspective. In: Agile Conference, Minneapolis, MN, p. 11
(2006)

15. Desouza, K.C.: Facilitating tacit knowledge exchange. Communications of the
ACM 46(6), 85–88 (2003)

16. Dybå, T., Moe, N.B.: Rethinking the Concept of Software Process Assessment. In: Euro-
pean Software Process Improvement Conference (EuroSPI), Pori, Finland (1999)

www.manaraa.com

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 104–113, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Empowering Students and the Community through
Agile Software Development Service-Learning

Joseph T. Chao1 and Jennifer K. Brown2

1 Department of Computer Science
2 Department of English

Bowling Green State University, Bowling Green, Ohio 43403, USA
{jchao,jkbrown}@bgsu.edu

Abstract. This paper describes an approach to service-learning in the software
engineering classroom that involves a central clearinghouse and maintenance
center for service-learning project requests, use of Agile methods, and collabo-
ration with a technical communication course. The paper describes the benefits
and drawbacks to service-learning in a software engineering course, rationale
behind using Agile, the course layout, specifics of the collaboration, the final
feedback of the community partners and students involved, and a discussion of
lessons learned.

Keywords: Teaching Agile Methods, Agile Software Development, Software
Engineering Education, Pedagogy, Service-learning, Active Learning, Real-
world Project.

1 Introduction

Service-learning has been a pedagogical approach used by many in software engineer-
ing courses to provide students with a real-world approach to learning software-
development skills [1, 2, 3, 4]. Bringle and Hatcher [5] define service-learning as a
“course-based, credit bearing educational experience in which students (a) participate
in an organized service activity that meets identified community needs, and (b) reflect
on the service activity in such a way as to gain further understanding of curricular
content, a broader appreciation of the discipline, and an enhanced sense of personal
values and civic responsibility.” This service-learning approach to software engineer-
ing courses contrasts with the traditional approach in which students learn software-
development skills by working in a lab on instructor-provided projects. Though this
approach does provide valuable learning experiences, it does not provide the experi-
ence of working with a client to develop a software solution that meets the task-
specific needs of the client, as the service-learning approach does.

Some argue that the service-learning approach to software engineering courses can
prove advantageous to computer science departments that incorporate it, and it can
prove advantageous to the entire computer science discipline [6, 7]. It has been sug-
gested that the service-learning approach may attract better-performing students to the
computer science discipline, which has been perceived with less interest by potential
students in recent years [8].

www.manaraa.com

 Empowering Students and the Community 105

1.1 Challenges to Implementing Service-Learning in Software Engineering
Courses

Though the service-learning approach to software engineering courses has been em-
braced by many, instructors are often reluctant to incorporate service-learning into
their courses because of the inherent drawbacks. Incorporating service-learning pro-
jects into a software engineering course requires extra time and organization from the
instructor (e.g., soliciting non-profit organizations to serve as community partners,
ensuring the partners are satisfied with their collaboration with the students), as well
as some method of providing maintenance and technical support once the students
who developed the software systems have completed the course.

Another challenge to incorporating service-learning projects into software engi-
neering courses is the time limitations of a typical semester in an educational institu-
tion. Most students do not have any prior knowledge in software development before
enrolling in the course, and typical semesters are limited to 16 weeks, which provides
little time to teach students the building blocks they need to develop quality software
systems. Moreover, a typical semester provides little time for students to meet with
their teams, develop the software, meet with clients, and write documentation to ac-
company the software.

1.2 A New Approach to Service-Learning in Software Engineering Courses

Aware of the benefits and drawbacks of service-learning in software engineering
courses, one instructor implemented a new approach in fall 2008 that mediated the
main challenges of service-learning in a software engineering course. This approach
required three steps:

1. Creation of the Agile Software Factory: The Agile Software Factory is a
program within the Department of Computer science serves as a clearing-
house for software-development requests from non-profit organizations and
continues to provide maintenance and technical support for completed soft-
ware systems.

2. Collaboration with a technical communication class: The students in the
technical communication class developed the documentation for the soft-
ware, which freed more time for the software engineering students to de-
velop the software and also provided both classes the opportunity to work
within a real-world industry scenario.

3. Teaching and incorporation of Agile methods: Using Agile methods to teach
software engineering allowed for better product development in a short time
period.

2 Implementing Service-Learning in the Software Engineering
Course

The three steps mentioned above for implementing a service-learning approach in the
software engineering course are discussed in further detail in this section.

www.manaraa.com

106 J.T. Chao and J.K. Brown

2.1 Involvement of the Agile Software Factory

The first step in incorporating the service-learning approach in the software engineer-
ing course was to develop the Agile Software Factory [9]. Founded in 2008, the Agile
Software Factory (ASF) was begun with a grant from the Agile Alliance and sponsor-
ship from the Computer Science department in which the ASF is housed, as well as
sponsorship from the university’s IT department.

The Agile Software Factory actively locates non-profit organizations that need
software solutions developed, and it also receives unsolicited software requests from
non-profit organizations. Once the ASF receives a software request, it evaluates its
feasibility as a service-learning project for students in the software engineering
courses. Once students complete the software system, the ASF provides ongoing
maintenance and technical support services for the non-profit organization (i.e., the
community partner). This reduces the burden on the instructor to provide maintenance
for software systems developed in the courses taught by that instructor.

In addition to providing and supporting service-learning projects for software engi-
neering courses, the ASF offers part-time student employment for undergraduate stu-
dents and independent projects for graduate students.

In the fall of 2008, the ASF located six service-learning projects from community
partners. These projects were assigned to teams of six to ten students, who were
mostly undergraduate seniors and first-year graduate students.

2.2 Collaboration with the Technical Communication Class

The computer science instructor then collaborated with a technical communication
instructor, who was teaching a senior-level undergraduate technical communication
course focused on online documentation.

The instructors determined the basic responsibilities of the computer science stu-
dents and the technical communication students and then assigned one or two (de-
pending on the scope of the project and the size of the software engineering team)
technical communication students to each of the software engineering teams. The
software engineering students were responsible for producing programmer-oriented
release notes that the technical communication students re-wrote for the intended cli-
ents. At the end of the semester, the technical communication students compiled and
organized the release notes into a complete online help file for the user.

2.3 Use of Agile Methods

The instructor of the software engineering course decided upon teaching and using
Agile methods for the service-learning project for three main reasons:

1. The growing use of Agile methods in industry
2. The focus on clients in the Agile approach
3. The iterative and incremental nature of Agile methods that would allow a

working system to be built by the students in 16 weeks

Semester Schedule. Before the beginning of the semester, the instructor developed an
iteration schedule that took advantage of Agile’s focus on clients, as well as its iterative

www.manaraa.com

 Empowering Students and the Community 107

and incremental nature. The semester schedule was divided into five iterations, I0–I4,
each consisting of three weeks (see Table 1).

Since most students were not familiar with software development methodologies,
and were not aware of XP or other Agile methods, the first three weeks were designed
to provide a quick overview of software engineering background and methods.
Throughout the semester, several Agile methods and XP practices were also intro-
duced in detail. The XP practices used in the course included the whole team, plan-
ning game, pair programming, coding standard, test-driven development, refactoring,
and continuous integration.

Table 1. Semester schedule

Week(s) Service-learning project task
1 & 2 Introduction to software engineering and the projects.
3 Formation of software development project teams and role assignments, as well as

the software development and technical communication combined teams.
4 First customer meeting and Iteration 0 (I0), which consisted of planning and a

requirements analysis.
5 Second customer meeting to review requirements and project plan.
6 & 7 Work on I1 and accompanying documentation.
8 Deliver I1 (a working system) with accompanying release notes and updated project

plan to client.
9 Work on I2 and accompanying documentation.
10 Deliver I2 (a working system) with accompanying release notes and updated project

plan to client.
11 Work on I3 and accompanying documentation.
12 Deliver I3 (a working system) with accompanying release notes and updated project

plan to client.
13–15 Work on I4. Perform qualitative usability test.
16 Deliver final software product and accompanying documentation (as a compiled

help file) to client.

Iteration Components. Iteration 0 consisted of project preparation, which included an
initial meeting with the community partners, research on technologies, and preliminary
project planning and estimation. The student teams were responsible for determining
what they could commit to completing for the client by the end of the semester, based
on client needs, team skills, and time limitations.

Iterations 1 through 4 required the student teams to complete user stories (system
requirements) for each iteration and deliver a functioning product (a portion of the
larger system) to the community partner at the end of the iteration. Each team ar-
ranged a meeting with their community partner at the end of each iteration to deliver
the product and documentation.

The technical communication students were responsible for producing release
notes to accompany the functioning product of each iteration. The release notes
served as reference documentation for the community partner after the software engi-
neering students installed the product and taught the partner how to use it.

www.manaraa.com

108 J.T. Chao and J.K. Brown

Student Responsibilities. At the beginning of the semester, the students were pro-
vided the semester schedule shown above, developed by the instructor. Class sessions
consisted of lectures that taught students the skills they would need to develop soft-
ware. Only 3 class sessions were used for in-class work time, which meant students
would have to work on the majority of their projects outside of class and schedule
team meetings outside of class.

To complete each iteration, the teams were responsible for determining among
themselves which team members would fulfill which roles (e.g., project manager,
developer, tester). The teams were also responsible for determining who would com-
plete which tasks on which days to ensure they completed the iterations by the dead-
lines and were meeting the needs of the community partner.

3 Outcomes

In fall semester of 2008, 46 students in two sections of the software engineering
course were assigned to one of six teams to complete one of the six service-learning
projects. By the end of the semester, the teams had completed the following projects:

• A victim case-tracking system
• An employee database system
• A service reporting system
• A service-learning information system
• A student-activity matching system
• An e-voting system

As with any new approach to teaching, and especially one that requires the coordi-
nation of multiple groups of people within a limited timeframe, this new approach to
service-learning in the software engineering classroom posed a number of challenges
(e.g., difficulty coordinating team member schedules, difficulty maintaining consis-
tent communication with the technical communication students, difficulty completing
iterations in a short period of time); however, the majority of the feedback from the
community partners and students validated this approach and justified continuing it in
future classes.

3.1 Student Feedback

At the end of the semester, the students agreed that they’d learned valuable skills from
the service-learning project; in fact, 100% of the 46 students agreed that they had
learned skills in the class that were applicable to the real world. Table 2 shows the
results of an anonymous survey asking the students to rank their level of agreement
with a series of statements about the course. Their responses indicate that most of the
students valued the service-learning experience and the real-world skills they gained
from their involvement in it.

In response to an open-ended question asking whether or not the students thought
their participation in the course would improve their chances of landing a job after
graduation, 34 of the 39 respondents to the question agreed that they indeed thought it

www.manaraa.com

 Empowering Students and the Community 109

Table 2. Student survey results
(SA = strongly agree; A = agree; N = neutral; D = disagree; SD = strongly disagree)

Survey Statement SA A N D SD
• The Agile methodology used in this class was a

good approach for completing my project.
27 13 5 1 0

• My team project this semester is a good project to
fulfill the purpose of this course. (45 respondents)

31 13 0 1 0

• I enjoyed working on the service-learning project
in this course.

27 13 3 3 0

• I am satisfied with the project progress this
semester.

14 24 3 4 1

• I understand the customer needs for the system. 24 21 0 1 0
• My team has produced a quality system that meets

the customer needs.
18 24 3 0 1

• My team has worked with/interacted with the
customer as professional service providers would.

15 22 7 2 0

• The communication between my team and the
customer has been prompt and painless.

11 23 7 4 1

• My communication skills have improved this
semester. (45 respondents)

15 24 4 2 0

• My teamwork skills have improved this semester. 16 25 4 1 0
• The skills I learned in this class are applicable to

the real world.
35 11 0 0 0

• Our collaboration with the technical
communicators on our team has been effective,
purposeful, and useful.

12 13 17 2 2

• The technical communicators on my team have
made a valuable contribution to our project.

14 17 10 4 1

• Collaboration with the technical communicators
was a good idea and should be continued for this
course in the future. (45 respondents)

15 17 11 0 2

would improve their chances of employment. In response to another open-ended
question that asked “Name one thing you do not want to see changed about this
course,” 26 of the 36 question respondents listed the service-learning component. A
number of students even mentioned the Agile approach itself. In fact, 31 of the 36
respondents to the question listed either (sometimes both) the service-learning or Ag-
ile components, or everything about the course.

Here are just a few of the students’ actual comments, which reinforce their appre-
ciation of the service-learning and Agile components of the course:

• “I thought I [could] never be a part of big projects like these.”
• “I have learned that teamwork is more important than individual talent.”
• “I think this class would not be nearly as effective without being a service-

learning project. Going through the motions in a real-life situation is some-
thing that I think all [University] CS majors should be a part of.”

• “I liked [using] the Agile method in a real-life project.”

www.manaraa.com

110 J.T. Chao and J.K. Brown

• “I had not heard of Agile software development before, but I am now glad I
have. It is a great tool that I plan to use in the future.”

• “I have gotten to see the other side of development, which is Agile. I also fi-
nally got to work on a project that matters in the real world.”

• “Prior to this class, I was not sold on the idea of software development as a
potential career. But after seeing all of the aspects of the process, I would
love to go into development.”

• “This is one of the most valuable courses in the entire CS dept.”

3.2 Community Partner Feedback

All five of the community partners who responded to an anonymous survey (out of
six who participated in the collaboration) reported that they enjoyed working with the
team (see Table 3). Four of the five strongly agreed that they had received the same
quality of software as professional developers would produce and that they would
recommend the service-learning collaboration to other non-profit organizations.

Table 3. Community partner survey results
(SA = strongly agree; A = agree; N = neutral; D = disagree; SD = strongly disagree)

Survey Statement SA A N D SD
• The student team has worked with/interacted with

me as professional service providers would
1 3 0 1 0

• The communication between the team and me has
been prompt and painless.

3 1 0 1 0

• I am satisfied with the project progress
throughout the semester.

3 1 0 1 0

• The project was planned well and was carried out
as planned.

4 0 0 1 0

• I enjoyed working with the team. 5 0 0 0 0
• The team has produced a useable system that

meets my needs. (Only 4 responses)
3 0 0 1 0

• I feel that I received the same quality of software
from this project as I would from professional
developers.

4 0 0 1 0

• It was worthwhile for me to participate in this
service-learning project.

4 0 1 0 0

• I will recommend this service-learning collabo
ration to other potential organizations.

4 0 1 0 0

In response to the survey question “Name one thing you like about your finished

product,” the community partners responded with the following:

• “It was an excellent experience and we have a really useful system that we
will implement in January. We would not be in a position to do this without
the support of the team.”

• “This is an excellent piece of software that will be useable by all employees
of [organization]. It’s fully functional, well thought out and exceeds [our]
expectations.”

www.manaraa.com

 Empowering Students and the Community 111

• “(1) How easy it is to use. (2) The physical appearance is appealing to the
eye.”

• “It delivered the product that was promised. The product is not intimidating
to the end users.”

• “It is user friendly and it clearly shows the incredible progress the students
made on this project.”

The community partners were also asked to name one thing they disliked about
their finished product, and answered with the following:

• “N/A”
• “We did not have time to adequately field test the system before the end of

the project; but the team did agree to tidy up some final items.”
• “Nothing”
• “The installation of the finished product should have been coordinated better

on our end using our IT support contractor.”
• “It does not allow us to do what we need as hoped. It doesn’t allow for the

complexity of reporting information needed; it doesn’t have any dynamic ar-
eas that can grow with agency needs. All of these are things asked for and
students committed to early on. It was clear by the last iteration, this was not
possible. Despite this, the remarkable progress students made on this diffi-
cult group task is impressive.”

When asked what they would like to see changed about the collaboration in the fu-
ture, the community partners’ responses fell into 3 basic categories:

• Clearer expectations at the beginning (e.g., required number of meetings,
definitions of the documentation they would be receiving, structure of the
collaboration)

• Allowing for more than one semester of work
• Improved student dynamics

When the community partners were asked what they would like to see unchanged
about the collaboration, they responded with the following:

• “I would like everything to remain as it was. There was great communication
between team members and the agency and the timeline was acceptable.”

• “The focus on the final product and the focus on non-profit partners.”
• “Everything.”
• “I thought the assignment of clear responsibilities of the team members ap-

peared to be a good group learning exercise and valuable experience in the
real world.”

• “The amazing talent of most of the students working to a collective good and
the dedication of the instructor to the learning of the students.”

Both sets of feedback provide valuable insight into what can be improved upon in
the future of this service-learning collaboration, which is discussed in the Lessons
Learned section below.

www.manaraa.com

112 J.T. Chao and J.K. Brown

4 Lessons Learned

Based on the project results, and the feedback from both students and community
partners, this service-learning software engineering approach was a success. In addi-
tion to achieving better management of all student projects, the instructor has gained
insight in several other areas and will take the following steps in the future:

• Consider the availability of the clients when evaluating the suitability of the
projects for the course. It would be valuable to have the clients sign an
agreement for their time commitments. Ideally, the customer would be on-
site, but because “customer on site” is not possible, the instructor will ensure
the clients understand that customer availability is required before commit-
ting to the project.

• Schedule release meetings, if applicable, early in the semester. One problem
encountered in the course was that one of the clients did not have time to
meet and provide feedback at the end of each iteration.

• Use class time often, or at least at the end of each iteration, for retrospec-
tives. The instructor has found that it is important to keep abreast of the pro-
gress of the projects and keep risk management in mind.

• Participate in customer meetings, especially the first meeting when finding
out requirements is essential. In several meetings the instructor attended,
students didn’t always ask probing questions that would allow them to figure
out the needs of the client, and they were often confused with system re-
quirements. While it is not possible for the instructor to attend all meetings
for all projects, it is crucial to attend the first meetings.

• Enforce some Agile practices such as pair programming and test-driven de-
velopment. The instructor has found that pair programming not only improves
the quality of the system, but also prevents students from procrastination.

With these new insights, the instructor will continue with this Agile service-learning
approach to software engineering education. We are confident this approach is pro-
ducing better-prepared software developers.

References

1. Liu, C.: Enriching Software Engineering Courses with Service-learning Projects and the
Open-Source Approach. In: The 27th International Conference on Software Engineering
(ICSE 2005), St. Louis, Missouri, May 15-21 (2005)

2. Poger, S., Bailie, F.: Student perspectives on a real world project. J. Comput. Small
Coll. 21(6), 69–75 (2006)

3. Song, K.: Teaching software engineering through reallife projects to bridge school and
industry. SIGCSE Bulletin 28(4), 59–64 (1996)

4. Tadayon, N.: Software engineering based on the team software process with a real world
project. J. Comput. Small Coll. 19(4), 133–142 (2004)

5. Bringle, R.G., Hatcher, J.A.: A Service-Learning Curriculum for Faculty. Michigan Journal
of Community Service Learning 2, 112–122 (1995)

www.manaraa.com

 Empowering Students and the Community 113

6. Rosmaita, B.J.: Making Service Learning Accessible to Computer Scientists. In:
Proceedings of the 38th SIGCSE Technical Symposium on Computer Science Education
Conference. SIGCSE 2007, Covington, Kentucky, USA (2007)

7. Purewal, T.S., Bennett, C., Maier, F.: Embracing the social relevance: computing, ethics
and the community. In: Proceedings of the 38th SIGCSE Technical Symposium on
Computer Science Education Conference. SIGCSE 2007, Covington, Kentucky, USA
(2007)

8. Carter, L.: Why students with an apparent aptitude for computer science don’t choose to
major in computer science. In: Proceedings of the 37th SIGCSE technical symposium on
Computer science education. SIGCSE 2006, Houston, Texas, USA (2006)

9. Chao, J., Randles, M.: Agile Software Factory for Student Service Learning. In: The 22nd
IEEE-CS Conference on Software Engineering Education and Training (CSEE&T 2009),
Hyderabad, India, February 17-19 (2009)

www.manaraa.com

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 114–123, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Putting Agile Teamwork to the Test –
An Preliminary Instrument for Empirically Assessing

and Improving Agile Software Development

Nils Brede Moe1, Torgeir Dingsøyr1, and Emil A. Røyrvik2

1 SINTEF ICT
2 SINTEF Technology and Society

NO-7465 Trondheim, Norway
{nilsm,torgeird,emilr}@sintef.no

Abstract. Team organizing is a major way of assisting collaboration in knowl-
edge intensive work such as software development, and is especially favored in
agile approaches. Motivated by the challenge of transforming an organization
from traditional command-and-control management to collaborative self-
managed teams, we present an instrument that we argue addresses key concerns
and characteristics of teamwork, and presents them along five dimensions that
must be addressed when improving teamwork in agile software development.
The dimensions are shared leadership, team orientation, redundancy, learning
and autonomy. The instrument gives a radar plot of the status of the teamwork.
We present empirical examples from using this instrument with three teams and
briefly outline potential uses of the instrument.

Keywords: Agile software development, scrum, self-managed, self-organized,
team radar, team effectiveness, empirical software engineering, case study.

1 Introduction

Various forms of collaboration between members is a foundational premise of agile
software development methodologies such as Extreme Programming (XP) and
Scrum [1]. Team organizing has been widely introduced as one major way of assist-
ing collaboration in knowledge intensive work such as software development, and is
especially favored in agile approaches. Agile methods accords primacy to unique-
ness, ambiguity, complexity, and change, and the goal of optimization in traditional
methods is being substituted by flexibility and responsiveness [2]. Team organizing
is advocated as one major response to the organizational needs of agile approaches,
especially in terms of work coordination.

In the traditional plan-driven approach, work is coordinated in a hierarchy involv-
ing a command-and-control style of management with clear separation of roles [2]. In
the agile approach, ideally work is coordinated by the self-organizing team, where the
team itself decide how work is coordinated [3]. Research on software development
teams has found that team performance is linked with the effectiveness of teamwork
coordination [4, 5].

www.manaraa.com

 Putting Agile Teamwork to the Test 115

How to coordinate and work effectively in a self-organizing team is not straightfor-
ward. A team following a plan-driven model often consists of independently focused
self-managing professionals, and a transition to a self-managing team is probably one
of the biggest challenges when introducing agile development [2]. Neither culture nor
mind-sets of people are easily changed, making the move to agile methodologies all
the more formidable for many organizations [3].

Motivated by the importance of team organizing in agile software development and
the challenge of transforming an organization from traditional command-and-control
management to collaborative self-organizing teams, this paper presents an instrument
that we argue addresses key concerns and characteristics of teamwork, and presents
them along five dimensions that must be addressed when improving teamwork in
software development. We develop a framework for empirically describing these
critical dimensions of teamwork, and motivated by a generic ambition combined with
an action research approach [6] it is especially tailored towards supporting the intro-
duction of, and change processes in, agile software development.

The rest of this paper is organized as follows: Section 2 gives an overview of re-
search on teamwork in general and in software engineering and agile development.
Section 3 defines what we believe are the five key characteristics of teamwork which
is relevant for agile teams, as an instrument to measure and improve teamwork.
Section 4 gives an empirical example from using this instrument on teams. Finally,
we discuss the instrument and conclude on its usability in Section 5.

2 Research on Teamwork

Teamwork is a topic that has attracted research from several disciplines [7-9]. Conse-
quently, there exists several definitions of teams, and the working definition we adopt
is that a team is “a small number of people with complementary skills who are com-
mitted to a common purpose, set of performance goals, and approach for which they
hold themselves mutually accountable” [10].

The issue of what processes and components comprise teamwork and how team-
work contributes to team effectiveness has received much attention [11, 12] Cross-
functional, and self-organizing teams have been found to have high productivity [7]
and increase the speed and accuracy of problem solving [13]. However, research
indicates that the effects of such teams are highly situationally dependent and that the
effects depend on factors such as the nature of the workforce and the nature of the
organization [7, 8]. Literature suggests that self-management requires team orienta-
tion and backup behaviour [14], learning [14], adaptivity, and trust [2].

Agile software development represents a new approach for planning and managing
software projects. The systematic review of empirical studies of agile software devel-
opment [1] identify ethnographically informed studies by Sharp and Robinson that
describe mature agile teams as having faith in their own abilities, showing respect and
responsibility, having established trust, and preserving the quality of working life.
Another research stream focusing on teamwork is Young et al. [15] work on personal-
ity characteristics for members of extreme programming development teams. In the
recent literature on agile development, we further find studies of motivation and cohe-
sion [16], individual characteristics and agile orientation [17], and motivational needs

www.manaraa.com

116 N.B. Moe, T. Dingsøyr, and E.A. Røyrvik

of extreme programming developers [18]. A study by Tessem and Maurer found high
motivation and job satisfaction in a large agile team [19]. Acuña et al. [20] examined
the perceptions on work procedures and practices within extreme programming teams.
They found that high team vision preferences (or mental models) and high participa-
tive safety (degree of trust) perceptions of the team were related to improved software
quality. Moe and Dingsøyr [21] found that Scrum had many of the mechanisms iden-
tified in the literature on team effectiveness in place, but found little support for team
leadership and backup-behaviour.

The combined studies of teamwork within agile development indicates that agile
methods are able to implement many of the characteristics of efficient teamwork from
the general literature, like group cohesion, motivation, trust and adaptability. How-
ever, on some areas, which we will present in the next section, there is little overlap
between the general literature and the agile literature.

3 An Instrument for Assessing and Improving Teamwork

In a large action research project comprising several companies using agile develop-
ment methods, we found that teamwork was a major challenge. To improve team-
work, we needed a way to describe and diagnose the status of teams and a means of
tracing and engaging with change processes.

For this purpose, we suggest the instrument described in the following, with five
dimensions: shared leadership, team orientation, redundancy, learning and autonomy.
The instrument is based on teamwork challenges identified in previous studies and on
experience from action research with several agile teams. The instrument has been
tried out on teams in two companies, as described in Section 4, and the feedback from
these sessions has been integrated into the instrument.

The instrument consists of a series of open-ended questions for each of the five
dimensions. Based on responses from a 20 minutes interview with all team members,
the researchers discuss and give the team a score between 0 and 10 on each dimen-
sion. Finally, we plot the score of the team in a radar plot, and this is the basis of a
feedback session with the team to discuss score and challenges.

The questions and scale is presented in the following, with a theoretical foundation
for each of the dimensions.

3.1 Shared Leadership

In the literature of self-organizing and self-managing teams, it is claimed that the
decision authority and leadership need to be shared [14, 22]. Pearce [23] argues that
leadership should be rotated to the person with the key knowledge, skills, and abilities
for the particular issues facing the team at any given moment. While the project man-
ager should maintain the leadership for project management duties, team members
should be allowed to lead when they possess the knowledge that needs to be shared or
utilized during different phases of the project [24]. According to Hoegl and Parbo-
teeah [25], all team members should also jointly share decision authority, rather than a
centralized decision structure where one person makes all the decisions or a decentral-
ized decision structure where all team members make decisions regarding their work
individually and independently of other team members.

www.manaraa.com

 Putting Agile Teamwork to the Test 117

Insofar as possible, team leaders should select team members based on their tech-
nical, teamwork, and leadership skills. If shared leadership is to be developed, the
right people must be on the team, and the teams need to be small enough [23]. The
team leader should also be responsible for clarifying purpose, securing resources,
articulate the vision and redesigning the team. He or she should also manage the
boundaries of the team, articulate how the team will approach its task and function as
a team (team process), and articulate trust and confidence in the team [23].

Questions: Is everyone involved in the decision-making process? Do team members
make important decisions without consulting other team members? How is the team
vision defined and presented? Is the team designed (and redesigned) according to its
purpose?
Scale: 0 - Not shared leadership. Command and control by the team-leader, only a
few takes part in the decision process. 10 - Shared leadership. The one that possess
the knowledge leads, everyone is allowed to participate in the decision-making.

3.2 Team Orientation

Team orientation or collective orientation is often described as giving priority to team
goals over individual goals [12]. Salas et al. [12] report on studies that show improved
individual effort and performance, individual satisfaction, and increased team per-
formance as a consequence on higher team orientation. Also, Salas et al. cite studies
who found that teams with a team orientation more frequently consider teammate
input when taking decisions.

Questions: How does the team take into account alternative suggestions in team
discussions? How does the team value alternative suggestions? How do team mem-
bers relate to the tasks of individuals? What kind of ownership do the team members
have to the project?
Scale: 0 – Individual goals are more important than team goals, team members do
not respect other team members´ behaviour. 10 – Team goals are more important
than individual goals, team members respect other team members´ behaviour.

3.3 Redundancy

According to Morgan [14], any system with an ability to self-manage must have a
degree of redundancy: a kind of excess capacity that can create room for innovation
and development to occur. Members in a team need multiple skills so that they are able
to perform (parts of) each other’s jobs and substitute each other as circumstances de-
mand. In this respect, socio-technical literature is concerned with “multiskilling” [26].

In psychologically oriented small-group research the concept of redundancy is of-
ten described as backup behavior [12]. If backup is to occur effectively, teammates
need to be informed of each others' work in order to identify what type of assistance is
required at a particular time [27]. Marks [27] identify three means of providing such
backup behavior: (1) providing a teammate verbal feedback or coaching, (2) assisting

www.manaraa.com

118 N.B. Moe, T. Dingsøyr, and E.A. Røyrvik

a teammate behaviorally in carrying out a task, or (3) to complete a task for the team
member when an overload is detected. Full redundancy is non-existent and the ques-
tion is rather how much redundancy one seeks to build into the system.

Questions: How easy is it to complete someone else’s task? If you are stuck; do you
get help? Do you help others when they got problems? How are tasks allocated? If
someone leaves the team; is it easy to substitute this person?
Scale: 0 - No redundancy. Team members are not able to give feedback, assist
others with carrying out tasks, or complete task started by others. 10 - Full redun-
dancy. Team members can replace other team members without extensive training.

3.4 Learning

Learning is important for teams for a number of reasons, including to develop shared
mental models, in order to improve team performance, and also; studies of self-
organizing teams show that this kind of organization requires a capacity for learning
that allows operating norms and rules to change in relation to transformations in the
wider environment [14]. One of the key inspirations for the Scrum method was the
article on new product development by Takeuchi and Nonaka [28]. In this article, they
describe “multilearning” as a key characteristic of new product development teams,
including learning on different levels and between functions.

Questions: What are the arenas where you give feedback on each others work? How
are software development problems identified, and do you improve the development
method? Do you keep what works well in your development process? How are
artifacts in the development process (burndown chart, backlog, daily meetings,
sprint reviews and retrospectives) used in order to learn?
Scale: 0 - a practice characterized by no feedback mechanisms. 10 - continuous
improvement of work methods.

3.5 Autonomy

The autonomy of teams is described in socio-technical literature [26] as the team’s
ability to regulate their boundary conditions. Team autonomy, or external autonomy,
is defined by Hoegl and Parboteeah [25] as the influence of management and other
individuals (outside the team) on the team’s activities. Such influence can be deliber-
ate actions from management to limit autonomy, such as requiring the team to make
certain decisions regarding work strategies or processes, project goals and resource
allocation.

While some forms of team-external influence are sometimes beneficial because
they provide important feedback to help project completion or encourage creativity
within the team by discouraging groupthink, Hoegl and Parboteeah [25] argue that the
specific type of team-external influence considered here is detrimental to teamwork in
projects e.g. developing software.

www.manaraa.com

 Putting Agile Teamwork to the Test 119

Questions: Does the team loose resources to other projects? Do people and groups
outside the team have influence over important operational decisions in the project?
Are decisions made by the team respected by people and groups outside the team?
Scale: 0- Decisions made by the team is not respected (by managers outside the
team). 10- Decisions made by the team is respected (by managers outside the team).

4 Empirical Testing

The preliminary instrument has been evaluated in two steps. It has been presented to
an agile expert group (industry and research) of 35 people. The expert group identi-
fied typical problems found in agile teams, and then applied the instrument to under-
stand these problems. Examples are: 1) the team agrees on test-driven development,
but this is not done in practice 2) the team has no control over the members assigned
to the team 3) management dos not trust the team fully. The expert group found the
model useful for understanding the cause and effect of such problems.

0

2

4

6

8

10
Shared leadership

Team orientation

RedundancyLearning

Autonomy
Blue

Green

Red

Step two was testing the instrument on three teams in two companies. The two
companies were part of a larger action research program, where several companies
have introduced elements from agile development. For the two companies where we
tried the team radar, Scrum was introduced because they wanted to improve their
ability to deliver iteratively and on time, increase the quality, improve the team-
feeling and team communication. One of the companies is situated in the south of
Norway and the other is situated in the northern part, therefore we name the compa-
nies “South” and “North”. Both companies had used Scrum for 18 months.

The authors conducted 17 interviews, based on the questions in chapter 3, with all
the team-members in the studied projects. From this we generated radar plots and
presented them to the team in a feedback session. These feedback sessions were used
to discuss the score and identify improvements actions in the team, and to assess the
usefulness of the instrument. All the teams confirmed the usefulness of the instrument

www.manaraa.com

120 N.B. Moe, T. Dingsøyr, and E.A. Røyrvik

since it brought into focus areas that needed to be improved. We will now present the
main results from the interviews and feedback session from what we have called the
Blue (South company), Red and Green team (North company).

4.1 South Company

This company has approximately 150 employees. They sell mass-market software and
they also write customer specific software on a contract-basis. The project (Blue pro-
ject) under study consists of four developers in the core team (one is a Scrum master),
two GUI designers, one product owner, and one project manager. The sprints usually
lasted three weeks. The team organized a 15 minutes stand-up every morning.

In the feedback session the team focused on autonomy (score 3) and learning
(score 3). The main reason for a low score on “learning” was because the team often
skipped retrospective and review-meetings. They felt it was challenging to do the
review meeting because part of the software did not contain any GUI. Also, there was
a feeling that the retrospective meetings did not really give value. One said: “the ret-
rospective turned out to be just another nice meeting without really discussing the
problems”. The team decided to re-implement review and retrospectives.

The product owner constantly visited existing and potential new customers. When
he got back he presented several new ideas, even during the sprint. The Scrum-master
did not manage to protect the team, and this decreased the level of autonomy. One
developer said: “I think the problem is that he is talking to so many customers, and
then his perspective constantly changes”. Changing the perspective in the middle of the
sprint undermined the decisions made in the beginning of the sprint, and resulted in
difficulties with delivering according to the sprint-plan. The team had problems con-
fronting the product owner with these problems, which made it difficult to improve the
processes. During the feedback session the team realised someone had to confront the
product owner, if not developers could end up leaving the team. The team perceived
the team-radar as useful, since it pointed out the most critical areas to improve.

4.2 North Company

This company has worked with large development projects as both a prime contractor
and a subcontractor. The company possesses a stable and highly skilled staff. The
company has approximately 60 employees, and the Scrum teams use 2 week sprints.
Both the green and red team held short, daily stand-up meetings.

A key feature of the seven person Green team is that the members work with several
different things, serving many products and projects. To some extent the team is com-
prised of one and two-person units - units that may have substantial overlapping inter-
ests and problems. They emphasize that being a group of some size is fruitful, to have
close colleagues with which to interact regularly. As a consequence of the one or two-
person specialist “mini-teams”, they got a low score on redundancy (score 4), but still
mutual help and overlapping competencies within the team existed. One said: “Which
person the task should be assigned to is self-evident in 90 percent of the cases – it’s
given who does what. However no one is allergic towards doing others tasks”. Another
said that: “We help each other out on general tasks [not specialist tasks], so that things
move faster”. Related to the low score on learning (score 2), one said: “We don’t do

www.manaraa.com

 Putting Agile Teamwork to the Test 121

retrospectives”. Another outlined the status: “We have no systematic feedback on each
others work”. This was the case because, as one member stated: “When finished with a
task, then ok, you look ahead, it is more focus on the next task”. However, as one
noted, “it is fun to look at others work”. In the feedback session the team found the
instrument useful both for initiating important collective discussions and for highlight-
ing potential areas for teamwork improvement. The team wanted to implement meas-
ures to address concerns related to redundancy, learning, and the relationship with the
product owner and project leaders, as well as other issues.

The six person Red team was characterized by relatively high scores on shared lead-
ership (6) and team orientation (6). On leadership, the team expressed that everyone in
the team was involved when making decisions, but one expressed that ”the ones who
have to do the work are most involved when making decisions”. The sprint the team
was working on when we did the interviews was characterized by clear goals. How-
ever, this was due to a delivery to an external customer, and usually when having an
internal product owner, the goal would be less clear, and the work would seem more
dispersed. On team orientation the Red team characterized their team as having ”lively
discussions”, and that ”everything is discussed”. Further, team members were said to
be interested in the work of others. However some expressed that everyone did not
have ownership to the team’s plans. The diagnosis of team led to a discussion with the
team on topics including short and long-term planning, how they assigned work tasks,
and how they viewed the role of specialists and generalists on the team. The interviews
and discussion was perceived as a valuable exercise by the team.

5 Conclusion and Further Work

Within the framework of a large action research project comprising several companies
using agile development methods, we have developed and used in practice an instru-
ment for assessing agile teamwork. We found that teamwork was a major challenge in
the companies [21, 29], and for improving teamwork we needed a way to describe
and diagnose the status of teams and a means of tracing and engaging with change
processes. Based upon the literature review and experiences from our own action
research introduction and test of the agile teamwork instrument, we conclude first that
both research and industry partners recognize the chosen five dimensions of the in-
strument as playing a pivotal role in agile teamwork. Furthermore, in addition to
being an instrument suitable for diagnosing the status of teamwork in agile develop-
ment, we believe it is appropriate also for tracing changes over time in the quality of
the teamwork, and finally that it enables interventionist measures for improving the
work in the team.

For the partners in the research project, the instrument enabled both a knowledge
base and the development of a language for engaging with teamwork change proc-
esses and follow-up. From the research side, the instrument provides valuable empiri-
cal data from which to analyse and describe the status of agile teamwork, and it
equips researchers with a methodological tool from which both analytical descriptions
and action research interventions might ensue. The instrument also contributed in
giving the researchers and developers a common language for discussing teamwork.

www.manaraa.com

122 N.B. Moe, T. Dingsøyr, and E.A. Røyrvik

A possible limitation of the instrument is the process of giving a score of the teams
along the five dimensions, because it might entail an idea that the score represent an
“objective mapping of the world”. The fine granularity of the scale (from 0 to 10)
might add to this notion. Both the use of the instrument as tracing changes in the qual-
ity of teamwork over time, the scoring procedure and the scale, and the interventionist
potential of the instrument will be more extensively pursued in further work. We will
also investigate how the type of team and how long the team has worked together
affects the scores on the instrument.

Acknowledgment

We appreciate the input received from the investigated companies. This research is
supported by the Research Council of Norway under Grant 174390/I40.

References

1. Dybå, T., Dingsøyr, T.: Empirical studies of agile software development: A systematic re-
view. Information and Software Technology 50, 833–859 (2008)

2. Nerur, S., Balijepally, V.: Theoretical reflections on agile development methodologies -
The traditional goal of optimization and control is making way for learning and innovation.
Communications of the ACM 50, 79–83 (2007)

3. Boehm, B.W., Turner, R.: Balancing Agility and Discipline: A Guide for the Perplexed.
Addison-Wesley, Reading (2003)

4. Kraut, R.E., Streeter, L.A.: Coordination in software development. Communications of the
ACM 38, 69–81 (1995)

5. Hoegl, M., Gemuenden, H.G.: Teamwork Quality and the Success of Innovative Projects:
A Theoretical Concept and Empirical Evidence. Organization science 12, 435–449 (2001)

6. Greenwood, D.J., Levin, M.: Introduction to action research: social research for social
change. Sage Publications, Thousand Oaks (2007)

7. Guzzo, R.A., Dickson, M.W.: Teams in organizations: Recent research on performance
and effectiveness. Annual Review of Psychology 47, 307–338 (1996)

8. Cohen, S.G., Bailey, D.E.: What makes teams work: Group effectiveness research from the
shop floor to the executive suite. Journal of Management 23, 239–290 (1997)

9. Sapsed, J., Bessant, J., Partington, D., Tranfield, D., Young, M.: Teamworking and knowl-
edge management: a review of converging themes. International Journal of Management
Reviews 4, 71–85 (2002)

10. Katzenbach, J.R., Smith, D.K.: The Discipline of Teams. Harvard Business Review 71,
111–120 (1993)

11. Langfred, C.W.: The paradox of self-management: Individual and group autonomy in work
groups. Journal of Organizational Behavior 21, 563–585 (2000)

12. Salas, E., Sims, D.E., Burke, C.S.: Is there a big five in teamwork? Small Group Re-
search 36, 555–599 (2005)

13. Tata, J., Prasad, S.: Team Self-management, Organizational Structure, and Judgments of
Team Effectiveness. Journal of Managerial Issues 16, 248–265 (2004)

14. Morgan, G.: Images of Organizations. SAGE publications, Thousand Oaks (2006)

www.manaraa.com

 Putting Agile Teamwork to the Test 123

15. Young, S.M., Edwards, H.M., McDonald, S., Thompson, J.B.: Personality Characteristics
in an XP Team: A Repertory Grid Study. In: Proceedings of Human and Social Factors of
Software Engineering (HSSE), St. Louis, Missouri, USA, pp. 1–7 (2005)

16. Whitworth, E., Biddle, R.: The Social Nature of Agile Teams, Agile, Washington, DC,
pp. 26–36 (2007)

17. Seger, T., Hazzan, O., Bar-Nahor, R.: Agile Orientation and Psychological Needs, Self-
Efficacy, and Perceived Support: A Two Job-Level Comparison, Agile, Toronto, pp. 3–14
(2008)

18. Beecham, S., Sharp, H., Baddoo, N., Hall, T., Robinson, H.: Does the XP environment
meet the motivational needs of the software developer? An empirical study, Agile, Wash-
ington, DC, pp. 37–49 (2007)

19. Tessem, B., Maurer, F.: Job Satisfaction and Motivation in a Large Agile Team. In: Con-
cas, G., Damiani, E., Scotto, M., Succi, G. (eds.) XP 2007. LNCS, vol. 4536, pp. 54–61.
Springer, Heidelberg (2007)

20. Acuña, S.T., Gómez, M., Juristo, N.: Towards understanding the relationship between
team climate and software quality—a quasi-experimental study. Empirical software engi-
neering 13, 401–434 (2008)

21. Moe, N.B., Dingsoyr, T.: Scrum and team effectiveness: Theory and practice. In: 9th In-
ternational Conference on Agile Processes in Software Engineering and Extreme Por-
gramming, Limerick, Ireland, pp. 11–20 (2008)

22. Kirkman, B.L., Rosen, B.: Beyond self-management: Antecedents and consequences of
team empowerment. Academy of Management Journal 42, 58–74 (1999)

23. Pearce, C.L.: The future of leadership: Combining vertical and shared leadership to trans-
form knowledge work. Academy of Management Executive 18, 47–57 (2004)

24. Hewitt, B., Walz, D.: Using Shared Leadership to Foster Knowledge Sharing in Informa-
tion Systems Development Projects. In: Proceedings of the 38th Annual Hawaii Interna-
tional Conference on System Sciences, 2005. HICSS 2005, p. 256a (2005)

25. Hoegl, M., Parboteeah, K.P.: Autonomy and teamwork in innovative projects. Human Re-
source Management 45, 67–79 (2006)

26. Emery, F., Thorsrud, E.: Democracy at work: the report of the Norwegian industrial de-
mocracy program. Martinus Nijhoff Social Sciences Division, Leiden (1976)

27. Marks, M.A.: A temporally based framework and taxonomy of team processes. The Acad-
emy of Management review 26, 356 (2001)

28. Takeuchi, H., Nonaka, I.: The New New Product Development Game. Harvard Business
Review 64, 137–146 (1986)

29. Moe, N.B., Aurum, A.: Understanding Decision-Making in Agile Software Development:
a Case-study. In: EuroMicro, Parma, Italy. IEEE, Los Alamitos (2008)

www.manaraa.com

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 124 – 129, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Agile Software Development and CMMI: What We Do
Not Know about Dancing with Elephants

Célio Santana1, Cristine Gusmão1, Liana Soares1, Caryna Pinheiro2,
Teresa Maciel3, Alexandre Vasconcelos4, and Ana Rouiller3

1 University of Pernambuco, Departament of Computer and Systems, Benfica St. 455,
50720-001 Recife, Pernambuco, Brazil

2 University of Calgary, Departament of Computer Science, Calgary, Canada
3 Federal Rural University of Pernambuco, Informatic and Statistic Departament,

Dois Irmãos avenue. S/N, 52171-900 Recife, Pernambuco, Brazil
4 Federal University of Pernambuco, Informatic Centre, Prof Luiz Freire Avenue.

S/N,50740-540 Recife, Pernambuco, Brazil
Celio.santana@gmail.com, capinhei@ucalgary.ca, cmgg@dsc.upe.br,

teresa@cesar.org.br, lsos@dsc.upe.br, amlv@cin.ufpe.br,
anarouiller@gmail.com

Abstract. In this paper we discuss how the merging of Agile Methodologies
and Software Quality Models in same process today is ignoring many important
aspects of both approaches. The inconsideration of these points results in a rigid
integration of Agile and Quality Models that limits the full potential of their
synergies. Ignoring such important items however does not necessarily means
that they are not being utilized in the process, it normally indicates their utiliza-
tion in an ad-hoc way. To explore this topic, we collected qualitative and quan-
titative data from literature and two Brazilian companies which work with agile
and XP.

Keywords: Capability Maturity Model Integration, CMMI, Agile Software De-
velopment.

1 Introduction

In 2001 the Agile movement proposed a shift in the values of software development
process from the mechanistic (i.e., driven by process and rules of science) to the or-
ganic (i.e., driven by softer issues of people and their interactions) [1].

Despite the changes in traditional software engineering presented by the Agile
methods, in 2001 one of the CMM developers, Mark Paulk, stated that CMM and an
Agile method called Extreme Programming (XP) [2] contain ideas that can be syner-
gistic [3].

This paper provides, through the analysis of the quantitative and qualitative data
gathered in literature and industry, a further contribution by bringing to attention the
relevant disregarded elements when merging Agile and CMMI, as well as presents the
consequences of implementing this incomplete merged methodology.

www.manaraa.com

 Agile Software Development and CMMI 125

After this introductory section, section 2 explores Agile Methods. In section 3,
CMMI is explained; section 4 shows how CMMI and Agile are being merged today;
section 5 shows what is fully or partially unknown about this merging and section 6
shows a summary and future works.

2 Agile Methodologies

In February 2001, seventeen of the leading developers and proponents of the “Agile
methods” proposed a meeting which resulted in four levels of agreement among the
participants [4]:

1st Level: There was a need for methods designed to respond to change during
software projects. Thus, they adopted the term “Agile” to identify such methods. They
agreed that the term “Light” was not appropriate because certain projects would not
employ a “Light” methodology but could still require agility.

2nd Level: The four statements of the “Agile Manifesto” [5]. These four statements
capture the core values on which all of the Agile Methods are built, as well as the
spirit in which they should be implemented.

3rd Level: The next level of agreement was on a set of 12 Agile Principles. In these
statements, the values are fleshed out in more detail and given more concrete meaning.

4th Level: The final level of agreement, which was to be a more detailed with actual
activities or tactics to running projects, was beyond their grasp at the time. They left
that fourth level for each agile method to define in its own way. Some of these agile
techniques are Extreme Programming (XP) [2] and Scrum [6].

3 Capability Maturity Model Integration

The Capability Mature Model Integration (CMMI) [7] is defined as a process im-
provement maturity model for the development of products and services. Consisting
of 22 process areas where each one area can be summarized to illustrate their compo-
nents, as shown in Figure 1.

CMMI enables one to approach process improvement and appraisals using two dif-
ferent representations: continuous and staged. The continuous representation enables
an organization to select a process area and improve processes related to it using six
(0 to 5) capability levels to characterize improvement related to an individual process
area. The staged representation uses predefined sets of process areas to define an im-
provement path for an organization characterized by five (1 to 5) maturity levels.

The following rules summarize equivalent staging:

• To achieve maturity level 2, in seven process areas assigned to maturity level
2 must achieve capability level 2 or higher.

• To achieve maturity level 3 or higher, all process areas assigned to that spe-
cific maturity levels and lowers must achieve capability level 3 or higher.

www.manaraa.com

126 C. Santana et al.

Fig. 1. CMMI Process Areas and their Components [7]

And a short description of each capability level follows:

• A capability level 0 process is defined as an “incomplete process”. One or
more of the specific goals of the process area are not satisfied, and no ge-
neric goals exist for this level.

• A capability level 1 process is defined as a “performed process.” A per-
formed process is a process that satisfies the specific goals of the process
area. Although capability level 1 does not address all generic goals at ca-
pability 2.

• A capability level 2 or higher process is a performed (capability level 1)
process that address all the generic goals for that capability level.

4 Agile and CMMI: What Do We Know?

4.1 Mapping Techniques of Agile Methods to CMMI Specific Practices

The first mapping between Agile and CMM was conducted by Paulk [4] fitting XP to
SW-CMM level 2. Since then, many reports following Paulk’s ideas such as [8, 9]
were published. These mappings refer to the low levels (2 and 3) of CMMI.

This paper also presents the research conducted in two companies using Agile and
following CMMI patterns. Their names must remain anonymous due to confidential-
ity reasons. Company 1, located in Brazil, has eleven years of experience in the mar-
ket and has recently been evaluated for SCAMPI to CMMI level 3 and uses Scrum in
sixteen projects. Company 2, located in Brazil, is a small-sized company with nine
years of experience in the market which will be evaluated at CMMI level 2 using XP
in a pilot project. They will be referred in the following sections to provide an indus-
try insight on the subjects.

About this subject, both companies conducted a gap analyses to understand the
misfits between CMMI and Agile. These gap analyses are also the mapping of each
company about agile and its relationship with CMMI specifics practices.

www.manaraa.com

 Agile Software Development and CMMI 127

4.2 Traditional and Agile Software Process Improvement

For Salo & Abrahamsson [10], stated two central differences between traditional and
agile SPI. Firstly, the origin of SPI goals is traditionally from the organizational level.
However, in the agile project context the power for SPI lies within project teams, and
their experiences throughout projects. Secondly, the process knowledge of project
teams has traditionally been harvested from finished projects. Instead, the focus of
agile project learning is on improving the performance of the ongoing project.

The traditional and agile SPI approaches are not contradictory. Rather, both the ap-
proaches can be beneficial in integrating agile software development and organiza-
tional learning. This, however, requires the integration of agile SPI mechanisms in the
organizational learning cycle.

The companies under study (company 1 and 2) structured their Software Engineering
Process Group (SEPG) outside agile teams, following the traditional SPI approaches.

5 Agile and CMMI: What We Do Not Know?

5.1 CMMI Support for Adopting Agile

According [11, 12], companies using CMMI provide support to agile making it an
easier and smoother methodology to adopt than in non CMMI companies. Neverthe-
less, [9] stated that even presenting similar ideas, merging Agile and CMMI could be
difficult, since there are other aspects seen in a different perspective.

This subject looks contradictory because the support provided by CMMI to any
methodology comes from its generic practices (see Fig 1). Sutherland et. al. [13]
stated how generics practices at capability 2 and 3 could support and improve Agile.

The companies under study (company 1 and 2) ignored how Generics Practices
support agile following the industrial tendency of ignore this subject.

5.2 Merging CMMI Specifics Practices and Agile, Is Still Agile at all.

Mnkandla & Dowlatzky [14] define the value of agility in “allowing the concepts
defined above to mutate within the parameters set by the agile values and principles”.
As a matter of fact, there is no mapping that provides a full fit between Agile and
CMMI. Thus, it is necessary to complement Agile with other practices, in which there
is no guarantee to be following agile values and principles.

Quantitatively, [13] and [15] presented evolution of indicators of quality and pro-
ductivity with the adoption of Agile merged with CMMI.

Sutherland et. al. [13] stated:

1. Scrum reduced defects by almost 50% compared to our previous CMMI
level 5 implementation.

2. Projects using Scrum shows a 201% increase in productivity.

www.manaraa.com

128 C. Santana et al.

Gravis & Jarvistock [15] Stated:

1. Defects reduced by 66%, Critical defects reduced by 79%;
2. Duration (in days) reduced by 44% and Effort (in hours) reduced by 47%;
3. Quality of Life improved by 81% business and 77% technology.

The companies 1 & 2 are still measuring their actual process (Agile + CMMI) to
compare against their previous CMMI process.

5.3 Aspects Almost Totally Unknown

• Adoption of statements and values of Agile Manifesto.

There is no data in the literature addressing the adoption of values and state-
ments of Agile Manifesto. Neither companies 1 or 2 considered the Manifesto
on their processes.

• Higher maturity levels of CMMI are close or deviate of Agile

The mappings seen in section 4.1 show to the deviation between agile and
process areas and specific practices of CMMI when the maturity level is raised
to level 3. However, Sutherland et. al. [13] stated that generics practices of
level 3 could improve agile. The lack of precise data on how much closer/far
are Agile, specifics practices and generics practices makes it impossible to
reach a conclusion about this subject.

6 Conclusion

Merging Agile e CMMI is neither strange nor innovative, many reports from both
academia and industry show how Agile and CMMI could live harmoniously in the
same environment with few quantitative results indicating positive results when these
approaches work together.

Although, the union between lower levels of Agile Manifesto (agile methods) and
CMMI (specific practices), does not provide many options for companies which want
to use Agile and CMMI. Ignoring the higher levels of Agile Manifesto and the others
components of CMMI, the companies could not see other opportunities to improve
their process, strengthen the union of the approaches and solve commons problems.

Finally there is a few diversity of researches dealing with merging Agile and
CMMI. Most of them are mappings where specific practices of the following process
areas of CMMI level: Project Planning (PP), Project Monitoring and Control (PMC)
and Requirements Management (REQM) are merged with Scrum or XP. This factor
leads to a false impression of full understanding about the subject.

6.1 Future Works

• Make further research on how CMMI Generic Practices could support
and improve Agile, and establish a “distance” between them;

www.manaraa.com

 Agile Software Development and CMMI 129

• Observe the behavior of these distance when higher maturity levels of
CMMI are achieved ;

• Collect indicators such as quality, productivity, schedule and costs after
the merging and verify their evolution comparing with themselves before
the merging;

• Investigate how the Agile Manifesto could be considered in this union.

References

1. Mnkandla, E., Dwolatzky, B.: Balancing the human and the engineering factors in soft-
ware development. In: IEEE AFRICON 2004 Conference, pp. 1207–1210 (2004)

2. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley, Reading
(2000)

3. Paulk, M.: Xp from a CMM perspective. IEEE Software 18(6), 19–26 (2001)
4. Koch, A.S.: Agile Software Development - Evaluating the Methods for Your Organization.

Artech House, Boston (2005)
5. Manifesto, A.: Agile Manifesto for Software Development (2001),

http://www.agilemanifesto.org/
6. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice-Hall,

Englewood Cliffs (2000)
7. Chrissis, M.B., Konrad, M., Shrum, S.: CMMI®: Guidelines for Process Integration and

Product Improvement. Addison-Wesley, Reading (2003)
8. Nawrocky, J., Walter, B., Wojciechoeski, A.: Comparison of CMM Level 2 and eXtreme

Programming. In: Kontio, J., Conradi, R. (eds.) ECSQ 2002. LNCS, vol. 2349, p. 288.
Springer, Heidelberg (2002)

9. Käkhönen, T., Abrahamssom, P.: Achieving CMMI Level 2 with Enhanced Extreme Pro-
gramming Approach. In: Bomarius, F., Iida, H. (eds.) PROFES 2004. LNCS, vol. 3009,
pp. 378–392. Springer, Heidelberg (2004)

10. Salo, O., Abrahamssom, P.: Integrating agile software development and software process
improvement: a longitudinal case study. In: International Symposium on Empirical Soft-
ware Engineering (2005)

11. Turner, R., Jain, A.: Agile Meets CMMI: Culture Clash or Common Cause. In: Wells, D.,
Williams, L. (eds.) XP 2002. LNCS, vol. 2418, pp. 153–165. Springer, Heidelberg (2002)

12. Jakobsen, C., Johnson, K.: Mature Agile with a twist of CMMI. In: Proceedings of the Ag-
ile Development Conference, pp. 212–217 (2008)

13. Sutherland, J., Jakobsen, C., Johnson, K.: Scrum and CMMI Level 5: The Magic Potion
for Code Warriors. In: Proceedings of the Agile Development Conference, pp. 466–471
(2007)

14. Mnkandla, E., Dwolatzky, B.: Balancing the human and the engineering factors in soft-
ware development. In: IEEE AFRICON 2004 Conference, pp. 1207–1210 (2004)

15. Jarvis, B., Gristock, S.: Extreme Programming, Six Sigma & CMMI – How they can work
together, a JP Morgan Chase Study,
http://www.sei.cmu.edu/cmmi/presentations/
sepg05.presentations/jarvis-gristock.pdf

www.manaraa.com

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 130–135, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Is ISO/IEC 15504 Applicable to Agile Methods?

Giuseppe Lami1 and Fabio Falcini2

1 Consiglio Nazionale delle Ricerche, Istituto di Scienza e Tecnologie dell’Informazione
via Moruzzi, 1 – I-56124 Pisa, Italy
giuseppe.lami@isti.cnr.it

2 Intecs SpA
via E. Giannessi, 5 – I-56121 Pisa, Italy
fabio.falcini@intecs.it

Abstract. In the last two decades several models for evaluating software proc-
ess capability have been defined and became more and more popular. The ap-
plication of such models, and in particular the ISO/IEC 15504, determined a
general software process improvement in many domains. Nevertheless, the ap-
plication of the ISO/IEC 15504 standard is still considered by many agile de-
velopers as incompatible with agile approaches. Such an attitude is mainly
based on common misunderstandings on what the ISO/IEC 15504 is and on
what its application involves. This paper aims at showing that this standard, if
genuinely applied, can be effectively used also in agile contexts.

Keywords: Software Process Capability Determnation, ISO/IEC 15504.

1 Introduction

After over 30 years of software engineering, software development is today supported
by disciplined and formal methodologies, paradigms and tools. Models and standards
providing guidelines, processes and evaluation methods for software development
exist as well. In particular, in the past two decades, several models for improving
software development processes became popular (in particular CMMI and SPICE –
ISO/IEC 15504). We witnessed, in our experience, some misuses of such models that
determined, sometimes, the paradox to be perceived as a bundle to the development
activities in software development teams. Agile methods arose as a reaction to the
misuse of firm and disciplined approaches to the software development.

In such a situation two parties rose up in the software community: the “agilers”,
challenging the disciplined approach seen as a way to spend the effort most on the
documentation than real software (the product), and the ”orthodox” believing that the
major effort required by a disciplined, rigorous and documented approach pays in
terms of quality of the final product. The authors of this paper (being representatives
of both the two parties of the barricade) discussed, on the basis of their common ex-
perience in leading software process improvement and assessment initiatives, how
and if the disciplined and rigorous approach and the agile one can co-exist. In this
paper, the applicability of the ISO/IEC 15504 (also known as SPICE) [1] for software
process assessment and improvement to agile contexts is discussed. The SPICE model

www.manaraa.com

 Is ISO/IEC 15504 Applicable to Agile Methods? 131

is generally perceived in the software community as a way to evaluate software proc-
ess from a formal and document-based perspective. Our aim is to debunk such a myth
and to show that the SPICE model, if genuinely applied, can be effectively used also
in agile organizations.

This paper is structured as follows: in Section 2 we present the ISO/IEC 15504
standard. In section 3 some typical misunderstandings about what ISO/IEC 15504 is
and what it requires to be applied are discussed. In Section 4 the applicability of the
ISO/IEC 15504 standard to agile contexts is systematically analyzed. Finally, in Sec-
tion 5 the final discussion is provided as well as the conclusions.

2 ISO/IEC 15504: Key Concepts

It is not the aim of this section to provide a detailed description of the ISO/IEC 15504
standard [1]; what we are interested in is to let the reader able to understand the basic
concepts underlying the standard. The purpose of the standard is to provide a scheme
for evaluating the capability of the software process and a way to improve it. Process
capability is defined as a characterization of the ability of a process to meet current or
projected business goals.

The three basilar concepts of the standard are: Process Reference Model (PRM),
Process Assessment Model (PAM) and Measurement Framework.

PRM: It is a model comprising definition of processes in a lifecycle described in
terms of process purpose and outcomes, together with an architecture describing the
relationships between processes. In other words, the PRM is the set of the descriptions
of the processes that will be assessed. While the standard doesn’t include any specific
PRM (it defines the requirements for defining a PRM), in practice the ISO/IEC 12207
[2] standard is very often used as PRM for ISO/IEC 15504.

PAM: It is a model suitable for the purpose of assessing process capability, based on
one or more PRMs. A PAM provides a two-dimensional view of process capability.
In one dimension, it describes a set of process entities that relate to the processes de-
fined in the specific PRM; in the other dimension the PAM describes capabilities that
relate to the process capability levels and process attributes defined in the Measure-
ment Framework that is part of the standard.

Measurement Framework: It provides a schema for use in characterizing the capa-
bility of an implemented process with respect to the PAM. Capability is defined on a
six-value ordinal scale. The scale represents increasing capability of the implemented
process. For the description of the meaning of each capability level, refers to [1]. The
achievement of a certain capability level is established by the rating of specific Proc-
ess Attributes (i.e. measurable characteristics of process capability applicable to any
process). The extent a Process Attribute is achieved is measured using a four-value
rating scale.

From what stated above, it should be clear that ISO/IEC 15504 is a standard having
the purpose of providing a structured approach for the assessment of processes. It is
neither a software development paradigm, nor a source of practices to be adopted, nor
a standard to be compliant with.

www.manaraa.com

132 G. Lami and F. Falcini

3 The Perception of SPICE: Myths and Truth

The authors collected, on the basis of their experience as consultants for software
process improvement initiatives and as SPICE assessors, common imprecise percep-
tions about SPICE arising from software developers once it is proposed for process
assessment or improvement. In the following typical statements about SPICE devel-
opers say, are listed and commented in order to show that they are largely not justified
and often based on a misunderstanding of the real nature of SPICE.

“SPICE requires being compliant with the V-model software development”
- False. It is true that the very most common PRM associated to the ISO/IEC

15504 is the ISO/IEC12207 that contains a set of processes that de-facto reflects
those of the V-model for software development. Nevertheless, the sequence and
the importance of the processes defined in the ISO/IEC 12207 are not determined
in the standard. Moreover the association between SPICE and a PRM for soft-
ware development may vary. Every organization can modify the ISO/IEC 12207
PRM or define a new one, without missing the SPICE compliance.

“SPICE requires the performance of a pre-defined set of Base Practices”
- False. The Part 5 of the ISO/IEC 15504 includes some Base Practices but they

are not mandatory. In fact, ISO/IEC15504 Part 5 is an exemplar part of the stan-
datd. What the standard requires to achieve the Capability Level 1 is the fulfill-
ment of the Process Purpose by means of the achievement of the related Process
Outcomes, no matter what practices are used to do that.

“SPICE requires the production of a set of mandatory documents”
- False. The considerations made for the point above, are valid also for documents.

SPICE does not require producing any specific document; it only requires pro-
ducing documents appropriate for the project characteristics and the organiza-
tion’s business goals.

“SPICE – capability level 2 requires the production of a formal project plan document”
- The sentence is partially true. There is no requirements on the degree of formal-

ism of the project plan document (it depends on the specific needs of the organi-
zation and projects), but there is the request to have the processes planned in
terms of activities and performance to reach the Capability level 2.

“The compliance with SPICE determines an overload of documents”
- False. SPICE does not necessarily produce any overload of documents but only

the necessary documents for achieving the target capability level. The ability of
the assessors/improvers is to understand, by taking into account the specific busi-
ness needs, application domain and operational environment, what are the essen-
tial documents required, without impose any superfluous effort.

“SPICE – level 3 requires following the same defined process for all the projects in-
dependently of their size and complexity”

- False. Having a defined general process is required only at Capability level 3.
Having a defined process doesn’t mean that such a process shall be replicated for
every project independently of its size and complexity. In fact, the process defini-
tion shall be accompanied by the capability to deploy processes in a tailored
manner according to the specific project characteristics.

www.manaraa.com

 Is ISO/IEC 15504 Applicable to Agile Methods? 133

4 Agile vs. SPICE: Theory and Practice

In this section we analyze the applicability of the SPICE model to Agile organizations.
Several different Agile methods exist. Each agile method has its own characteristics
and peculiarities [3, 4]. We do not consider any specific method for our analysis, the
applicability of SPICE in agile contexts is discussed from a generic point of view con-
sidering the agile methods’ common aspects and principles.

To perform the analysis we consider the five levels the capability dimension the
ISO/IEC 15504 standard PAM is composed of. For each capability level we discuss
if, in principle, possible drawbacks in applying SPICE to the agile methods exist.

Level 1: As discussed in section 3, to reach the capability level 1, a process needs to
achieve its stated purpose. In general, the capability level 1 can be achieved no mat-
ter what techniques, methods or tools are applied. The point is to understand if the
agile approaches can be able to achieve the purpose of the processes in the PRM in
the same way the traditional approaches do. Agile practices are not always new, they
are traditional practices applied with a different orientation and with the emphasis
given to specific aspects (as the face-to-face communication, the high frequency of
releases,…) [5, 6]. In addition, there are several works in literature [7, 8, 9] showing
that the agile approaches con co-exist with a typical model based on a traditional and
process-based software development: CMMI [10]. Moreover, SPICE is currently and
successfully applied to organizations adopting the iterative model for software de-
velopment [11]. The iterative approaches, in comparison with the waterfall or V
models [12], can be considered bringing a certain degree of agility [13]. Agile can
also be seen as an extreme application of the iterative approach.

Level 2: To be rated at capability level 2, the activities related to specific process shall
be planned, monitored and, possibly, adjusted; moreover its work products shall be
appropriately established, controlled and maintained. Agile processes are performed
paying more attention to answering questions than following a plan as well as to short
term planning. Such a principle contained in the Agile Manifesto [14] seems to be in
contrast with the requirements of SPICE for level 2. On the contrary, SPICE at capabil-
ity level 2 focuses on the capability to adapt the plans to changing situations and to
establish the right resources allocation to the project; these aspects are fitting well with
agile approaches. Moreover, SPICE requires paying attention to the quality require-
ments and management of Work Products. In the ISO/IEC 15504 standard the term
Work Product is used in place of document. The reason is the will to refer to general
artifacts produced during the software development (not only documents) and the will
to emphasize the working nature of the products. An essential requirement to be satis-
fied at capability level 2 is the appropriate production, usage and control of work prod-
ucts (i.e. in a way being in line with the project characteristics and needs). Again, such
an approach fits well for agile contexts.

Level 3: To be rated at level 3 a process shall be managed and implemented using a
defined process that is capable of achieving the expected outcomes. Agile processes
have the characteristic to be adaptable and flexible in order to be suitable for changing
contexts. SPICE, even if it requires a defined process at capability level 3, requires at
the same time the capability of tailoring (i.e. adapt the defined process) according to

www.manaraa.com

134 G. Lami and F. Falcini

the specific project needs and context. Without such a capability the capability level 3
cannot be achieved. The agile processes can achieve the SPICE capability level 3
without any particular limitation.

Level 4: To achieve capability level 4, a process is required to use measurements to
ensure that the performance of the process supports the achievement of process objec-
tives in support of defined business goals. Agile processes are, for example, oriented
on using the number of customer requirements implemented as the main measure of
the progress and achievement of the objectives. SPICE doesn’t indicate what the
measures to be collected and used are, and then there is not incompatibility also in
this case. Moreover, to achieve this capability level it is required to use the measures
collected for controlling and possibly adjusting the process performance. That, again,
is not in contrast with the agile philosophy.

Level 5: To achieve capability level 5, the process shall be continuously improved to
meet the current and projected business goal. That is a target for any organization
adopting any development methodology, then also for agile organizations.

We showed that ISO/IEC 15504 is, in principle, applicable to agile contexts, never-
theless it doesn’t mean that it can be in practice applicable without encoutering in
practical problems. Below, we identify and discuss some problems that should be
solved to make SPICE assessments practically executable in agile organizations.

Process Reference Model: we already noted that the SPICE’s most used PRM is the
ISO/IEC12207. We also discussed in the previous sections that it can, in principle, be
applied to agile processes. Nevertheless, the ISO/IEC 12207 may be not suitable for
specific contexts. In the past, several initiatives have been undertaken with the aim of
personalizing SPICE in order to make it able to fit well in specific application do-
mains. In particular, SPICE has been tailored for the space, automotive, banking and
medical domains. All these initiatives arose from the difficulties to apply generic
SPICE PRMs to specific domain having some peculiarities that required a tailored
model. The most successful initiative (i.e. the today’s most widely applied in the spe-
cific domain) is the Automotive SPICE [15, 16]. The experiences in defining specific
PRMs indicate the way for defining an Agile-specific PRM in order to apply the
SPICE assessment mechanism to a set of processes specifically defined and then well
focused on the agile methodologies.

Assessor’s competence: An agile-specific assessors’ qualification scheme should be
build-up. The assessors should be trained appropriately in order to let them ready to
consider the nature of agile approaches and consequently be able to rate the processes
objectively and in repeatable way. The assessors of agile processes should be aware
of the peculiarities of the agile methodologies and have direct experience of software
development in agile contexts.

5 Final Discussion and Conclusions

The experience of the last decade shows that the availability of effective models for
quantitatively evaluating the capability of software organizations is very important for
many reasons. First because it allows to determine the risk of having low-quality
software products a priori (i.e. before starting a project) on the basis of the evaluation
of the software development process. Moreover, it allows the setting up of process

www.manaraa.com

 Is ISO/IEC 15504 Applicable to Agile Methods? 135

improvement programs by identifying targets in terms of process capability. These
advantages can be moved also in the agile world. We discussed the applicability of
SPICE in agile contexts starting from the objection of some common misunderstand-
ing, and false myths on the real nature of the SPICE approach. Then, in a more sys-
tematic way, we highlighted the suitability of the SPICE model for agile contexts as
well as the barriers to be overcome in order to let it be practically applied. By choos-
ing an agile approach, an organization should not be prevented to assess its “maturity”
using the SPICE model, and to take corresponding improvement steps. The discipline
of higher maturity levels over agile projects would combine the best of discipline and
agility with an optimal trade-off in many contexts between cost, quality and time-to-
market. In conclusion, we are optimistic about the applicability of the SPICE model to
agile contexts, and we consider this paper as a contribution to get the agilers and the
orthodox closer in order to mutually take advantages.

Acknowledgements

Thanks to John Favaro and Paolo Panaroni of Intecs Spa for the precious suggestions
and support.

References

1. International Organization for Standardization. ISO/IEC 15504 International Standard
Information Technology – Software Process Assessment: Part 1–Part 7 (2008)

2. International Organization for Standardization. ISO/IEC 12207 International Standard
System and Software Engineering – Software Life Cycle Processes (2008)

3. Bohem, B., Turner, R.: Balancing Agility with Discipline – A Guide for the Perplexed.
Addison Wesley, Boston (2004)

4. Cohen, D., Lindvall, M., Costa, P.: Agile Software Development. DACS SOAR Report n.
11. Data & Analysis Center for Software, Rome, NY (2003)

5. Cockburn, A., Highsmith, J.: Agile Software Development: The People Factor. IEEE
Computer 34(11), 131–133 (2001)

6. Highsmith, J., Cockburn, A.: Agile Software Development: The Business of Innovation.
IEEE Computer 34(9), 120–122 (2001)

7. Glazer, H., et al.: CMMI or Agile: Why Not Embrace Both! Technical Note CMU/SEI-
2008-TN-003. Carnegie Mellon University - Software Engineering Institute (2008)

8. Paulk, M.C.: Agile Methodologies and Process Discipline. CrossTalk: the Journal of
defense Software Engineering 15(20), 15–18 (2002)

9. Paulk, M.C.: Extreme Programming from a CMM Perspective. IEEE Software 18(6),
19–26 (2001)

10. Chrissis, M.B., Konrad, M., Shrum, S.: CMMI Guidelines for Process Integration and
Product Improvement. Addison-Wesley, Reading (2004)

11. Larman, C., Basili, V.: Iterative and Incremental Development: A Brief History. IEEE
Computer 36(6), 47–56 (2003)

12. Sommerville, I.: Software Engineering, 6th edn. Addison-Wesley, Reading (2001)
13. Larman, C.: Agile and Iterative Development: A Manager’s Guide. Addison Wesley

Professional, Reading (2003)
14. Beck, K., et al.: The Agile Manifesto (2001), http://www.agilemanifesto.org
15. Automotive SIG: Automotive SPICE Process Assessment Model (PAM), rel. V.2.4 (2008)
16. Automotive SIG: Automotive SPICE Process Reference Model (PRM), rel. V.4.4 (2008)

www.manaraa.com

Lesson Learnt from an Agile Implementation

Project

Paul Murphy and Brian Donnellan

National University of Ireland, Galway, Ireland
paulmurphyster@gmail.com

Abstract. This paper focuses on the communication concerns that un-
folded in a company as it endeavored to move from its existing waterfall
model to an agile environment. A task team was established to adopt an
agile practice and to trial it on a customer specific project. The team was
given the freedom to be innovative and adopt whatever agile practices
they wished. Early enthusiasm was evident however management had
concerns about viability of this new approach. Management did not see
the project plans and corresponding documentation trail of the water-
fall model, and from their perspective it lacked structure. Trust between
management and engineers weakened primarily due to a lack of commu-
nication and a reduction in the ability to work together, resulting in the
waterfall model being reinstated.

Keywords: Communication, Collaboration.

1 Introduction

This paper focuses on the good and bad aspects of communication that evolved
when a company attempted a transition from a waterfall model to an agile
environment. A very brief synopsis of the literature review and research methods
is presented due to the restrictions on the permitted size of this paper. The main
focus will be on the findings, followed by a discussion and a conclusion

2 Literature Review

As this paper focuses on communication it will consider two of the four per-
spectives as outlined by the Agile Alliance which was established in 2001. This
is in relation to ”individuals and communication over processes and tools” and
”working software over comprehensive documentation”. Many authors have seen
communication as important for innovation [7], [12], [19]. The Agile Alliance does
not see wide-ranging documentation as important as working software however
the dissemination of knowledge through documentation or a knowledge man-
agement system is also a requirement of innovation [2], [6], [7], [9], [10], [20].
Communication between everybody is vital for an organisation to be innovative
so that everybody understands what the other is doing [2].

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 136–141, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.manaraa.com

Lesson Learnt from an Agile Implementation Project 137

Agile Methodologies and Practices. Each agile methodology attempts to
accommodate various factors that the authors perceived to be important in
order to develop an agile approach. Such characteristics include the amount of
interaction a customer will have with development, the size of the team and the
size or type of system being developed [1], [4], [8]. Other factors include whether
a team is co-located or distributed. As can be seen later in the findings all of
these have an effect on communication. XP was embraced by the agile team. It
is not within the scope of this paper to go into details on the agile practices used
however details can be found in the literature [4], [14], [17], [18].

3 Research Methods

The research was on a multi-national company that was in existence for over 25
years and during this time had developed a well documented waterfall model. As
the company grew so too did the complexity of projects and documentation. A
group of engineers were looking for a better more efficient way of working, and
so proposed to adopt the XP methodology. Management provided them with
a specific customer project to trial run the new way of working. A number of
people were contacted that were involved in this project which included engi-
neers, architects, project manager and product managers. In order to provide a
comparison on responses a questionnaire was circulated [15]. The questionnaire
helped to identify the type of person (e.g. developer or architect) to see if there
were any trends. There were also a number of open ended questions. If further
clarifications were required this was conducted via a Skype call, MSN or email.
Comments from individuals have been included in quotations particularly when
others had similar thoughts. While a cross comparison on all responses was un-
dertaken in relation to agile methods and practices, the working environment,
training, and project planning the focus of this paper will be on the communi-
cation between peers and management.

4 Findings

A number of aspects were considered when analysing the data and are presented
in each sub-chapter below however it must be remembered that each view can
influence the other. The chapter concludes with a summary from participants in
relation to their views on the future of agile

Initial Take Up Of Agile: The agile initiative in the company was under-
taken by 4 engineers who were tired of the ”bureaucratic overhead of a heavy
process nobody actually followed” in reference to the waterfall model and all its
documentation and processes which they referred to as ”analysis paralysis”. One
director supported them in this initiative.

www.manaraa.com

138 P. Murphy and B. Donnellan

The Agile Team: The team started with 4 people with a development back-
ground and grew to include architects, developers and project/product managers
to about 30 people. When test, documentation and sales were added the team
grew to 55 people. Agile contractors were also recruited to speed up the develop-
ment. Universities and Higher Education Institutions were not contacted to help
support or develop the agile team. The large team was dispersed across com-
pany subsidiaries and it was reported that ”intra-team communication became
difficult, with lots of communication issues due to multiple sites within multiple
countries”.

Training: While the majority of the team received training it was reported
that the product managers did not and they stuck to the old waterfall method
of trying to clarify all requirements up-front.

The Environment: The team was given freedom to establish their own work
environment in a corner of the building which they setup as one room with glass
partitions so people from the outside could look in. On a positive note this led
to increased communication between those in the office. From a negative view it
was reported that the environment was very noisy and no room left for people
to think on their own. The overhearing of irrelevant discussion was also deemed
distracting by some and anyone in a ”bad mood quickly brought the whole
team down”.

Communication: Internal to the corner office, face to face communication was
possible. Externally, information was conveyed via meetings and a wiki. Inter-
nally the team believed it was easy to come and discuss issues while external
team members reported that they felt ”uncomfortable going to the corner office”.
Some people considered that this gap in communication was one of the main rea-
sons as to why agile development was dropped. A communication rift developed
between the product mangers who were external to the corner office and the
developers who were in the corner office. As stated ”neither of the groups knew
or wanted to learn how the other group works and what they expected, one was
writing thick product specifications when the other was expecting simple user
stories”.

Project Planning: Management were used to the waterfall model project plans
and lost confidence as they could not determine the percentage of work completed
and what stage gate they were at. Management was also used to a delivery date,
costs analysis and statistics on progress being presented however this was also not
available. From the development and project planning perspective a deliverable
product after each iteration was not available. Had one been available it would
have restored management’s confidence.

The Customer: Product management was the customer interface however it
was reported that they could not prioritise the features to determine which
should be developed first. Only when management placed a product manager

www.manaraa.com

Lesson Learnt from an Agile Implementation Project 139

inside the corner office did communication improve. On a positive perspective
the customer got exactly what they wanted. When management decided that
they wanted to make a generic product available they resorted to a waterfall
model. The specific customer development was reported as a disadvantage for
the future generalisation of the product.

Agile Methods and Practices: Not everybody believed they were following
XP, some thought it was Crystal and others Feature Driven Development. Sim-
ilarly, not everybody followed the same practices. The more popular practices
included user stories, stand-up meetings, pair programming and continuous inte-
gration of code. Only half of the project team knew about team coding standards.
Very few of the team knew the big picture yet the system metaphor suggest that
it is ”one of the most important practices of all” [14], and as reported each
sub-team ”focused on their own limited problem area”.

Agile Today: Due to management’s ”lack of control” of the project the agile
development was stopped. Management liked some aspects of agile e.g. stand up
meetings. For New Product Development (NPD) agile would be a good option
however for multiple customers and versions they would feel more comfortable
with the waterfall model.

5 Discussion

The following chapter reviews the findings on communication from an innovation
perspective through an organisation and environment lens.

Organisation Innovation: The team was supported and empowered by top
management [11], [20] and provided with direct communication to a director
in the company. ”Empowerment, when combined with leadership support and
commitment, gives people freedom to take responsibility for innovation” [11].
While some complained about overhearing conversation, such close collabora-
tion should be embraced [18]. They initially started with 4 people however this
expanded to 30 and up to 55. This trumpet model of development [2] meant
that the whole team could not be co-located resulting in a globally distributed
agile development environment which made XP unsuitable [1], [13]. A lack of
understanding of the agile principles and practices between management and
engineers led to poor communication in three directions, top-down, bottom-up
and diagonally [16]. Organising the groups into specialties, product managers
and developers leads to one not understanding the others needs and concerns
[2]. Instead of the wiki, face to face communication would have been far more
effective [2], [3]. Senior management were use to milestones from the waterfall
model and this led to concerns about deadlines which has also been found in
other research and requires a change in culture [1], [5].

www.manaraa.com

140 P. Murphy and B. Donnellan

An Innovative Environment: Placing the initial agile team into an office pro-
moted communication amongst them, and letting them design their own office
created a team spirit however external communication appeared to suffer. If the
office was located centrally without glass barriers this might increase the com-
munication and ”chance encounters, which create the possibility for inspiration
and creativity - the sources of innovation” [2].

6 Conclusions

Throughout the findings a break down in communication was evident. Isolating
the agile team to a corner office with glass barriers did not help to break the bar-
riers and encourage face to face communication. Three aspects of communication
have been seen as important for innovation, ”communication for coordination,
communication for information and communication for inspiration” [2]. It ap-
pears from the case study that all three were problematic. This could have been
improved if the corner-office was more centrally located and accessible.

Acknowledgments. I wish to acknowledge the participants. Thanks to An-
drew Begel and Nachiappan Nagappan from Microsoft Research for providing a
questionnaire, which they used in their survey and influenced the questions used
in this case study.

References

1. Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile software development
methods: Review and Analysis. Espoo, Finland: Technical Research Centre of Fin-
land, VTT Publications 478, pp.7–94 (2002)

2. Allen, T., Henn, G.: The Organization and Architecture of Innovation: Managing
the Flow of Technology. Elsevier, Oxford (2007)

3. Anderson, N., Jarskog, J.: Front End of Innovation. A study of how mature com-
panies can improve the initial stages of innovation, Master Thesis at Linköping
Institute of Technology, Linköping University Department of Computer and Infor-
mation Science (2002)

4. Beck, K.: Extreme Programming Explained. Addison-Wesley, Boston (2000)
5. Begel, A., Nagappen, N.: Usage and Perceptions of Agile Software Development in

an Industrial Context: An Exploratory Study (2007)
6. Chesbrough, H.: The Era of Open Innovation, MIT Sloan Management Review

(2003)
7. Denning, P.: The Social Life Of Innovation. Communications of the ACM 47(4),

15–19 (2004)
8. Cockburn, A.: Writing effective Use Cases: The Crystal Collection for Software

Professionals. Addison-Wesley Professional, Reading (2000)
9. Donnellan, B., Fitzgerald, B.: A Knowledge Management Application to support

Knowledge Sharing in a Design Engineering Community. In: Proceedings of 11th
European Conference on Information Systems (ECIS), Naples, Italy (2003)

10. Drucker, P.F.: Innovation and Entrepreneurship: Practice and Principles. Heine-
mann, London (1985)

www.manaraa.com

Lesson Learnt from an Agile Implementation Project 141

11. Flynn, M., Dooley, L., O’Sullivan, D., Cormican, K.: Idea Management For Organi-
sational Innovation. International Journal of Innovation Management 7(4), 417–442
(2003)

12. Kautz, K., Nielsen, P.: Understanding the implementation of software process im-
provement innovations in software organizations. Info. Systems Journal 14, 3–22
(2004)

13. Layman, L., Williams, L., Damian, D., Bures, H.: Essential Communication Prac-
tices for Extreme Programming in a Global Software Development Team. Infor-
mation and Software Technology 48, 781–794 (2005)

14. McBreen, P.: Questioning Extreme Programming. Addison-Wesley, Reading (2003)
15. McCracken, G.: The Long Interview Newbury Park. Sage Publications, CA (1988)
16. Rollinson, D.: Organisational Behaviour And Analysis An Integrated Approach,

3rd edn. Prentice Hall, Englewood Cliffs (2005)
17. Sharp, H., Robinson, H.: An Ethnographic Study of XP Practice. Empirical Soft-

ware Engineering 9, 353–375 (2004)
18. Sharp, H., Robinson, H.: A Distributed Cognition Account of Mature XP Teams.

In: Abrahamsson, P., Marchesi, M., Succi, G. (eds.) XP 2006. LNCS, vol. 4044,
pp. 1–10. Springer, Heidelberg (2006)

19. Slappendel, C.: Perspectives on innovation in organizations. Organization Stud-
ies 17(1), 107–129 (1996)

20. Tidd, J., Bessant, J., Pavitt, K.: Managing Innovation: Integrating Technological,
Market and Organizational Change, 3rd edn. John Wiley and Sons, Chichester
(1997)

www.manaraa.com

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 142–148, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Study of Risk Management in DSDM

Sharon Coyle and Kieran Conboy

Business Information Systems Group, Centre for Innovation and Structural Change,
J.E. Cairnes Graduate School of Business and Economics,

National Universtiy of Ireland Galway
{Sharon.Coyle,Kieran.Conboy}@nuigalway.ie

http://www.nuigalway.ie/commerce/

Abstract. A principle objective of agile methods is to reduce well-known risks
associated with common systems development project failures. While there is
extensive academic literature on risk management and its growing importance,
literature in relation to risk management in an agile context is still in infancy.
The purpose of this research paper is to highlight the extent to which risk man-
agement practices are incorporated into a specific agile method known as
DSDM. The methodology deployed for this research involved a case study of a
change management consultancy firm dedicated to the use of the Dynamic Sys-
tems Development Method (DSDM).

Keywords: Dynamic Systems Development Method (DSDM), Information
Systems Development (ISD), Risk Management, Agile Methods.

1 Introduction

The continuing growth in the utilization of agile methods highlights a necessity within
organizations to adapt and respond to change at a more efficient pace. Furthermore,
the use of such methods is primarily driven by a strong desire to reduce well-known
risks (such as scope creep), associated with common system development project
failures. However, no matter what the nature of change, there will always be associ-
ated risks involved and it is therefore imperative that risk management procedures are
in place. Agile methods are known for their use of iterative development, active user
involvement and their acknowledgement of the need to incorporate changing system
requirements and “focus on generating early releases of working products using
mostly collaborative techniques” [1].

1.1 Motivation for Research

While there is extensive literature on risk management, research of risk management
in agile ISD projects is non-existent. This is surprising considering how quickly agile
methods are being adopted in ISD where a survey conducted by Vijayasarathy and
Turk [3], having a total of 98 respondents indicated that sixty percent use agile ap-
proaches in seventy five percent or more of their projects. Many books on agile meth-
ods “have remarkably little to say about how a development team determines the risks

www.manaraa.com

 A Study of Risk Management in DSDM 143

it faces, prioritises them or takes action to negate their effects” [4]. Essentially agile
approaches must tailor traditional risk management techniques meant for “years-long
projects into a risk driven agile iteration lasting only seven to thirty days” [4]. How
agile projects go about doing this remains unknown.

Numerous agile methods exist and a detailed analysis of risk management across
all these methods was beyond the scope of this research. DSDM was chosen for this
study as it is considered to be the first “truly agile software development method” [2].
It is also a worthy example to use because the method not only focuses on systems
development from a coding or technical perspective but also places emphasis on
higher-level business perspectives. Specifically the research focuses on three main
elements of risk management, namely risk identification, estimation and evaluation.

2 Theoretical Foundations

While many authors highlight distinct approaches and frameworks for dealing with
risk management, its basic fundamentals remain the same and are consistent across
disciplines. The literature shows similar emphasis on the most important activities in
risk management namely, those identified by Rowe [6] and Charette [7] – the early
practitioners of risk management – who outline the three main elements of risk as-
sessment as (i) Risk Identification, (ii) Risk Estimation and (iii) Risk Evaluation.

2.1 Risk Identification

Risk identification is the reduction of descriptive uncertainty [6] which involves “sur-
veying the range of potential threats” [7]. This element of risk assessment involves
detecting issues which could jeopardize or threaten the success of a project [8, 9].
Chapman [10] states that “the risk identification and assessment stages have the larg-
est impact on the accuracy of any risk assessment.” It is therefore the most important
stage of risk management and is an early, yet ongoing, continuous process that re-
quires regular screening and monitoring [9, 11].

The two most dominant sources of internal risk identified across the literature are
Senior/Project Management and Project Team. The dominating external source of risk
is the client. All of these were collectively identified by Mantel, Meredith et al. [12].
Every source of risk can have numerous risk factors. A risk factor is “a condition that
forms a serious threat to the completion of an IT project” [13]. Wiegers [14] identified
some of the most dominant risk factors. For example, creeping user requirements and
excessive schedule pressure placed eighty and sixty five per cent of system develop-
ment projects at risk respectively.

2.2 Risk Estimation

Risk estimation is the reduction of measurement uncertainty [6] where “the values of the
variables describing the system are determined, the various consequences of an event
occurring are identified” and finally, “the magnitude of the risk is determined” [7]. Risk
estimation attempts to estimate “the chance (or probability) of potential loss” as well as
“the exposure to potential loss i.e. the consequences or magnitude of the identified
risks” [16]. The chance of potential loss is essentially the process of attaching a

www.manaraa.com

144 S. Coyle and K. Conboy

probability of occurrence to any identified risk. As Hall [5] states “estimation is the ap-
praisal of risk probability and consequence.” Consequence is decided relative to cost,
schedule and technical goals [5]. According to McManus [17], probability data should
be used to compute the risk. When no actual data on probabilities exist, estimates by
individuals most familiar with the project, its risk factors and overall problems are a
good substitute [12].

2.3 Risk Evaluation

According to Rowe [6], risk evaluation involves “risk aversive action, which can result
in risk reduction or risk acceptance.” Risk aversive action is essentially any mission
that is undertaken to control a risk [6]. At a glance, the purpose of risk evaluation is to
amalgamate the results of the risk estimation phase [15] and then decide the best action
to take. Risk evaluation involves (i) establishing the ‘acceptable’ level of risk, (ii) un-
derstanding how the risks interact and (iii) determining the action(s) that needs to be
taken [18] such as risk mitigation, risk avoidance, risk acceptance or risk transfer [15].

The acceptable level of a risk will depend on “individual propensity to take risks”
[6], which lie in the hands of the project manager and as a result is difficult to specify.
By avoiding any risk action however, we are eliminating any proactive risk manage-
ment. This means that if the risk occurs, reactive approaches will be applied such as
contingency planning [19].

2.4 Overview of DSDM

The main idea behind DSDM “is that instead of fixing the amount of functionality in a
product and then adjusting time and resources to reach that functionality, it is preferred
to fix time and resources and then adjust the amount of functionality accordingly” [2].
The DSDM Consortium advocates that because each organization is different none of
its practices are detailed [2]. DSDM phases are made up of functional design prototype
iteration followed by actual implementation with each iteration stage identifying,
agreeing, creating and reviewing the prototypes [20]. However before any iteration
begins, a project will always start with a feasibility and business study. This highlights
that that the method is not just focused on technical deliverables and ensures that the
business is the driver of technological developments.

DSDM has an active community and although the method is fully available, access
to white papers outlining the specific use of the method is limited to such members [2].
Therefore, the extent to which DSDM incorporates risk management in practice is un-
known. Empirical evidence of the method is enclosed in such white papers, which are
not publicly available. For the purpose of this research, a member of the DSDM Con-
sortium who participated in this study, kindly provided the researcher access to infor-
mation regarding DSDM’s fundamental principles for conducting risk management.

2.5 Risk Management in DSDM

Risk management practices conducted in DSDM projects are driven by the following
processes. A suitability risk list determines at the outset how compatible a particular
project is for the use of DSDM. A risk log is then created, maintained and updated

www.manaraa.com

 A Study of Risk Management in DSDM 145

throughout the life of the project [21]. The DSDM Consortium [21] has stated how
“systems that meet the needs of the business are delivered through the incremental
and iterative approach with its continuous feedback from users” while “cost and time
overruns are avoided by the use of timeboxes.” Therefore timeboxing is used to re-
duce one of the main risk factors in systems development i.e. scope creep.

As a result many would propose that methods like DSDM would not need to incor-
porate a high degree of risk management into their processes because the very reason
for their existence is to reduce common risks associated with these well-known pro-
ject failures. However, it appears from this literature research from the DSDM Con-
sortium that DSDM itself gives no less consideration to risk management than what
has been documented for traditional projects.

3 Research Methodology

This research utilized a single case study focusing on an Irish change management
consultancy firm, XpertResults (pseudonym) that have utilized DSDM since its exis-
tence over eight years ago. All participants in the study have extensive experience
using traditional systems development methodologies and could therefore make accu-
rate comparisons between the practice of risk management on both agile and tradi-
tional systems development projects.

A qualitative research approach was chosen because of its greater exploratory na-
ture and its applicability to this research domain as it focuses “on gaining familiarity
with the subject area” and gaining “insights for more rigorous investigation at a later
stage” [22].

3.1 Data Collection

Due to the fact that there was little pre-existing theory on the phenomena being stud-
ied [23] the data collection technique needed to “emphasise meanings and experi-
ences related to the phenomena” under investigation [22]. As such, for the purpose
of conducting primary research the author decided to use semi-structured, personal
one-to-one interviews, which were carried out with XpertResults’ managing director
as well as four of its key consultants (having extensive software development experi-
ence) and analysts. Each interview had a duration of approximately one hour.

4 Findings and Analysis

During data analysis it became evident that the concept of managing risk can never
be curtailed whether the project is agile or traditional based. In fact, one of the con-
sultants interviewed emphasized how in their experience there is a greater level of
exposure of the importance of managing risk using DSDM due to high-level stake-
holder involvement and collaboration. An experienced workshop facilitator noted
how they bring DSDM risk management practices into traditional project environ-
ments, which reinforce any risk methodologies already in place by the client.

www.manaraa.com

146 S. Coyle and K. Conboy

4.1 Risk Identification in DSDM

It became evident from all interviews that risk identification is an integral part of the
risk management process. The interviewees generally spoke about three main aspects
of their risk identification process, which revolved around an early suitability filter;
ongoing workshops and risk log updates. One interviewee explained that before
commencing a project, the suitability filter aims to identify how appropriate DSDM is
for a proposed project. The existence of this suitability filter is a strong indication that
DSDM clearly recognizes the potential for associated risks when using the method on
incompatible projects. Furthermore the managing director noted how even in a scop-
ing workshop they “quickly identify risks from all stakeholder perspectives” and later
they conduct more “formal risk assessment, which may be part of another workshop.”
This conveys how risks are considered at the very outset.

Interview participants predominantly referred to the risk log as their main medium
for continuous monitoring and updating of risks. Again, one interviewee explained
how “risks would be reviewed on a weekly or fortnightly basis in conjunction with
status reports that are carried out. What’s outstanding on the risk log would be in-
cluded in the status report.” The researcher was given access to one of the organiza-
tions risk log which contained a risk number, category, description, colour code (for
high, medium or low risks), assignment of risk, date, proposed action and follow-up
control. With regard to overcoming client risk, a consultant stated how “in DSDM you
actually manage scope creep with specific techniques such as prioritisation of re-
quirements and timeboxing. Within each timebox you set the scope upfront and agree
that you will not go beyond that.”

4.2 Risk Estimation in DSDM

The DSDM Consortium (1999-2003) outlines how the ‘level of risk’ is equal to the
likelihood of its occurrence multiplied by the severity of impact, which supports lit-
erature in relation to risk estimation. The process was also evident in this case study
where risks would be prioritized on this basis. An experienced workshop facilitator
stated how their “main mechanism for prioritizing risks would use a probability by
impact approach.” In contrast however, the managing director stated that they would
prioritize a risk relative to the prioritized requirement to which the risk effects. The
researcher concluded that while some respondents referred to the main concepts of
risk estimation, the nature to which they believe risks are prioritized was extremely
dependent on each interviewee’s role and experience. For example, the most junior
team member stated how they would “prioritize risks and identify which are actual
show-stoppers but estimating risk probabilities or allocating percentages to the im-
pact on a project is something I haven’t had experience of.”

4.3 Risk Evaluation in DSDM

A general consensus emerged in this study that it is not considered feasible to carry
out action for all risks. As a leading consultant stated “it just wouldn’t be practical
and in some cases this may be more expensive to the project than what it would have
to endure if the risk actually occurred.” However, all respondents agreed on one im-
portant point when discussing responsive actions and this involved the importance of

www.manaraa.com

 A Study of Risk Management in DSDM 147

responding to the highest prioritized risks in the same manner as they would respond
to the prioritized ‘must-have’ requirements in specific timeboxes. The researcher
noted something important about this level of clarity in that the principles set down by
the Consortium for requirements prioritization and timeboxing have been made appli-
cable to the approaches adopted for managing and responding to risks.

5 Conclusions and Further Research

This research sought to discover the extent of risk management in DSDM. An analy-
sis of the literature revealed little evidence of the extent of use of risk management
practices in agile methods. It is widely recognized that agile methods themselves were
introduced to combat well-known risks associated with ISD project failures such as
scope creep and cost overruns. Their use of incremental development and active user
involvement is an attempt to combat such risks.

Nevertheless, the findings of this research shows that the extent to which risk man-
agement is conducted in DSDM is in no way inferior to that carried out on traditional
projects. While the research produced many interesting findings there is scope for
further research. Given the diversity with which methods are adopted across organiza-
tions, a large-scale quantitative study may identify more generalisable themes regard-
ing the adoption and deployment of risk management. Furthermore, the case adopted
in this research focused solely on one agile method. Given the diversity that exists
across the agile method family, there is a need to examine other methods.

References

1. Reifer, D.: How good are agile methods? IEEE Software 19(4), 16–18 (2002)
2. Abrahamsson, P., Warsta, J., et al.: New Directions on Agile Methods: A Comparative

Analysis. In: 25th International Conference on Software Engineering, pp. 244–254. IEEE
Computer Society Press, Los Alamitos (2003)

3. Vijayasarathy, L., Turk, D.: Agile Software Development: A survey of early adopters.
Journal of Information Technology Management 19(2) (2008)

4. Smith, P., Pichler, R.: Agile Risks/Agile Rewards. Software Development 13(4), 50–53
(2005)

5. Hall, E.M.: Managing Risk: Methods for Software Systems Development. Addison-
Wesley, Reading (1998)

6. Rowe, W.D.: An Anatomy of Risk. John Wiley & Sons Ltd., Chichester (1977)
7. Charette, R.N.: Applications Strategies for Risk Analysis. Multiscience Press Inc. (1990)
8. Coppendale, J.: Manage Risk in Product and Process Development and Avoid Unpleasant

Surprises. Engineering Management Journal 5(1), 35–38 (1995)
9. Grey, S.: Practical Risk Assessment for Project Management. John Wiley & Sons Ltd.,

Chichester (1995)
10. Chapman, R.J.: The Effectiveness of Working Group Risk Identification and Assessment

Techniques. International Journal of Project Management 16(6), 333–343 (1998)
11. Boehm, B.W.: Software Risk Management: Principles and Practices. IEEE Software 8(1),

32–41 (1991)
12. Mantel, S.J., Meredith, J.R., et al.: Project Management in Practice. John Wiley & Sons,

Inc., Chichester (2001)

www.manaraa.com

148 S. Coyle and K. Conboy

13. Keil, M., Cule, P.E.: A Framework for Identifying Software Project Risks.
Communications of the ACM 41(11), 76–83 (1998)

14. Wiegers, K.E.: Know Your Enemy: Software Risk Management. Software
Development 6(10), 38–42 (1998)

15. Chapman, C., Ward, S.: Project Risk Management: Processes, Techniques and Insights.
John Wiley & Sons Ltd., Chichester (1997)

16. Charette, R.N.: Software Engineering Risk Analysis and Management. Multiscience Press
(1989)

17. McManus, J.: Risk Management in Software Development Projects. Elsevier/ Butterworth-
Heinemann (2004)

18. Charette, R.N.: Software Engineering Risk Analysis and Management. Multiscience Press
(1989)

19. Frame, J.D.: The New Project Management: Tools for an Age of Rapid Change,
Complexity, and Other Business Realities. A Wiley Company, Jossey-Bass (2002)

20. Beynon-Davies, P., Williams, M.D.: The Diffusion of Information Systems Development
Methods. Journal of Strategic Information Systems 12(1), 29–46 (2003)

21. DSDM Consortium Manual Version 4.2: Risk Management (2002-2006)
22. Collis, J., Hussey, R.: Business Research. Palgrave Macmillian (2003)
23. Bonoma, T.: Case Research in Marketing: Opportunities, Problems and a Process. Journal

of Marketing Research 22(2), 199–208 (1985)

www.manaraa.com

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 149–154, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Storytest-Driven Approach to the Migration of Legacy
Systems

Fabio Abbattista, Alessandro Bianchi, and Filippo Lanubile

Dipartimento di Informatica, University of Bari
Via Orabona, 4 – 70126 Bari, Italy

{fabio,bianchi,lanubile}@di.uniba.it

Abstract. In this paper, we propose an agile approach, for the migration of
legacy software which combines a user story-based iterative process with auto-
mated acceptance testing. The proposed approach, named Storytest-Driven Mi-
gration (STDM), requires that acceptance tests are written both on the legacy
and target versions of a software system. Because of their relevance, the quality
of automated acceptance tests is assured through software inspections. As a
proof of concept, we conducted a first migration project of a web application
towards both a web application framework and a mobile platform.

Keywords: migration, storytest-driven development, acceptance testing.

1 Introduction

Legacy applications draw on outdated technologies but continue to be used because
they serve critical business needs; in order to allow their usage in up-to-date environ-
ments migration processes are often executed [5]. When embarking on migration
projects, organizations must be sure that the outputs of the target systems will be
completely consistent with those of the legacy systems. Testing should be a continu-
ous activity during a migration project; up to 80 percent of a migration project time
can be spent testing the target system [3].

Storytest-driven development (STDD) [12], also called executable acceptance test-
driven development [9], is an extension of test-driven development (TDD) [2]. While
TDD focuses on the unit testing level, STDD starts from the functional acceptance
test level. With STDD, developers write user stories first and then, in collaboration
with customers, define story tests in a tabular format [11], which can be used as a
living specification; for each user story they document what inputs are supplied to the
system and what outputs are expected. Once story test tables have been defined, de-
velopers write test fixtures – the code which is used to take the inputs from the story
test tables – exercise the system under test (SUT) and compare the observed and ex-
pected results. Finally, developers write the system code which successfully passes
story tests.

We posit that organizations can benefit from adopting a test-driven approach when
they have to migrate legacy applications. In particular, for the migration of legacy

www.manaraa.com

150 F. Abbattista, A. Bianchi, and F. Lanubile

applications, we propose a user story-based iterative process which is driven by ac-
ceptance testing. Our approach proposes to write automated story tests both on the
legacy and target versions of the application. Moreover, because of their relevance,
the quality of automated story tests is assured through software inspections. We call
the process Storytest-Driven Migration (STDM). As a proof of concept, we conducted
a first migration experience of a webmail application.

The remainder of this paper is organized as follows. Section 2 describes the pro-
posed storytest-driven approach to migrate a legacy system. Section 3 describes the
first experience we conducted to validate the approach. Finally, Section 4 concludes
the paper.

2 Storytest-Driven Migration

Storytest-Driven Migration (STDM) is an iterative process running over user stories
and terminating when all the user stories are successfully migrated to the target plat-
form. With STDM, user stories together with related story tests take the place of the
traditional requirements documents. User stories describe the features of the legacy
application as well as of the migrated application. Story tests are written to be exe-
cuted both on the legacy and target versions of the application. Story tests are for-
mally reviewed at the end of each cycle.

The process model we propose includes the following four steps, which are
executed iteratively (see Fig. 1):

Customers

Write
user stories

Code

Write
story tests

Test

Review
Refactor

Migrate story tests

Add a user story

[Fail]

[Pass]

Customers
and others

InspectorsDevelopers

Fig. 1. Story Test-Driven Migration process

www.manaraa.com

 A Storytest-Driven Approach to the Migration of Legacy Systems 151

Write user stories. This first step is aimed at building a descriptive form of the re-
quirements of the system to be migrated. In our context user stories might also con-
sider issues related to the specific platform for which the migration is executed.

Write story tests. Once user stories are ready, customers or users together with testers
or developers define story tests aimed at validating requirements described by user
stories. Having the tests in place gives a clearer perspective on what one wants to
achieve as well as a confidence in performing the migration. Differently to test fix-
tures, which are strictly related to the software platform, story tests are written just
once and they should be completely or, at least, partially reused on the target system
after they are written on the legacy system.

Migrate story tests. Basically, this step includes the three known activities of the TDD
cycle (test, code and refactor) with some changes, shown in Figure 2. In the test step
developers should write fixtures for the legacy system and run them against the legacy
system. Then in the code step, they should migrate the legacy code, run fixtures writ-
ten for the legacy system against the migrated system and, if needed, modify or re-
write fixtures according to the target platform. Finally, in the refactor step developers
clean up the migrated code, in order to make it easier to understand. Only small
changes can be applied because complete refactoring could be too expensive for the
purposes of a migration project.

Review. The outputs of the previous steps, i.e., test fixtures and migrated code, are
reviewed by an inspection team, and in case reworked.

Refactor

Migrate story tests

Test

Code

Add a test Exercise legacy
system as SUT

Migrate legacy code
to make test pass

Exercise migrated
system as SUT

[Fail]

[Pass]

Fig. 2. Explosion of the “Migrate story tests” step

www.manaraa.com

152 F. Abbattista, A. Bianchi, and F. Lanubile

3 A First Experience with the STDM Process

The main goals of this first migration experience were the following: (1) to evaluate
the feasibility of the STDM process; (2) to assess the reusability level of test fixtures
written for the legacy system on the target system; and (3) to evaluate the usefulness
of the selected tools to implement the STDM process.

The experience consisted of a double migration of a JSP-based webmail applica-
tion [6] towards the Apache Wicket framework and Java Platform Micro Edition
(Java ME). Two final-year students were involved as developers while the researchers
played the role of customers.

We selected XPlanner as a project management tool and Subversion as a source
code management system. We also used Google Docs for the first two steps of the
STDM process (see Fig. 1). By using Google Docs, customers produced the docu-
ment, including user stories, which was also accessible online to developers. Then
developers, in collaboration with customers, wrote the story tests for each user story
by creating different spreadsheets. Before automating the acceptance testing, develop-
ers also created FIT tables using FitNesse, according to the story tests previously
defined. To implement text fixtures the developer group used JWebUnit for the legacy
system, JWebUnit again for the Wicket-based target system, and J2MEUnit for the
Java ME-based target system.

This first experience allows us to get some preliminary feedback, mostly based on
direct observation and comments provided by the developers.

Feasibility of the STDM process. We observed that reviewing test fixtures helps to
have correctly written test code which can then be used as formal specifications. Ac-
cording to our previous study [8] we found that inspections can improve the quality of
test code. However, reviewing test fixtures when user story migration ended implied
that the test issues found on the legacy are often repeated on the target system. The
present study also confirms that the most common issues [10] which were found in the
test code mainly affect the traceability and maintainability of test fixtures (see Fig. 3).

0

2

4

6

8

10

12

14

Wicket-based target system Java ME-based target system

Fig. 3. Type of issues found by reviewers during inspection

www.manaraa.com

 A Storytest-Driven Approach to the Migration of Legacy Systems 153

Reusability of test fixtures. We found that the test fixtures written for the legacy sys-
tem were almost fully reused when migrating to Wicket, while the opposite happened
for the Java ME migration as the target test code had to be developed from scratch.
This is because the legacy test code and the target test code for the Wicket-based
solution both used the same acceptance testing framework, JWebUnit. On the con-
trary, the developer had to implement tests for the Java ME-based target system using
a unit test framework such as J2MEUnit because, at the current date, there are no
available acceptance testing frameworks for Java ME applications. However, we also
found that the developer created test code faster for the Java ME-based target system
than for the legacy system. Writing test code for the legacy system made comprehen-
sion of the application logic easier, and then speeded up the implementation of target
test code.

Usefulness of tools. We collected both positive and negative observations about the
usefulness of tools we used. Google Docs and IBIS were considered effective for the
purpose they were used for. JWebUnit was found better than FitNesse to automate
acceptance testing of the legacy application but there was a lack of appropriate
frameworks for automating the acceptance testing of Java ME applications.

4 Discussion and Conclusions

We have presented a user-story based iterative process to migrate legacy applications.
The test-driven approach has already been used for software migration [1], [4], [7],
[13]. The novelty of our approach with respect to the existing literature mainly con-
cerns two aspects.

On one side, our approach proposes to write automated acceptance tests both on
the legacy and target versions of the application. In the best case we can run the same
acceptance tests written for the legacy system also on the target system. This can
assure that the target system preserves the behavior of the legacy system. However,
since migration may also have a different platform or language as a target, test fix-
tures may not be reused, and thus it may require implementing acceptance tests twice.
In this worst case, we posit that writing acceptance tests can bring at least two bene-
fits: better understanding of the system to be migrated and a valid starting point to
make a migration plan. Secondly, we require that story tests are reviewed by custom-
ers, especially if they take the role of specifications in place of documents. A previous
study reported results about the benefits from software inspections conducted on
automated unit test cases [8].

We conducted a first migration project of a web application towards both a web
application framework and a mobile platform. In general, we found that iteratively
migrating a legacy system worked well and that a user story can be the right portion
for quick reviews. The migration from a legacy web platform to a modern web appli-
cation framework, sharing the same acceptance test framework, made it possible a
seamless reuse of the story test code initially written for the legacy system. However,
we were not able to make any reuse of the story test code when migrating to the mo-
bile platform. This is not a weakness of the proposed approach, but it depends on both
the deep differences between the legacy and target platforms and the lack for a Java
ME-based acceptance testing framework.

www.manaraa.com

154 F. Abbattista, A. Bianchi, and F. Lanubile

As future work, we intend to apply the STDM process to other and more complex
legacy systems in order to assess if an earlier implementation of acceptance tests for
the legacy application has a value. Through a number of experiences applying the
STDM process we will define the several conditions we may encounter and some
patterns to follow during migration projects.

Acknowledgments. This work is partially supported by MiUR-Italy, under grant
PRIN 2006 “METAMORPHOS”. We would like to thank Teresa Mallardo for the
effort she put into the migration project and Mario Scalas for his valuable comments
on a first draft of the paper.

References

1. Andersson, J., Bache, G., Sutton, P.: XP with Acceptance-Test Driven Development:
A rewrite project for a resource optimization system. In: Marchesi, M., Succi, G. (eds.) XP
2003. LNCS, vol. 2675, pp. 180–188. Springer, Heidelberg (2003)

2. Beck, K.: Test Driven Development: By Example. Addison-Wesley, New York (2002)
3. Bisbal, J., Lawless, D., Wu, B., Grimson, J.: Legacy information systems: issues and direc-

tions. IEEE Software 16(15), 103–111 (1999)
4. Bohnet, R., Meszaros, G.: Test-Driven Porting. In: Agile Development Conference (ADC

2005), pp. 259–266. IEEE Computer Society, Los Alamitos (2005)
5. Brodie, M.L., Stonebraker, M.: Migrating Legacy Systems. Morgan Kaufmann, San Fran-

cisco (1995)
6. Brugali, D., Torchiano, M.: Software Development, Case Studies in Java. Addison

Wesley, New York (2005)
7. Hennessy, M., Power, J.F.: Ensuring behavioral equivalence in test-driven porting.

In: Conference of the Center for Advanced Studies on Collaborative Research (CASCON
2006). ACM Press, New York (2006)

8. Lanubile, F., Mallardo, T.: Inspecting Automated Test Code: a Preliminary Study. In: Con-
cas, G., Damiani, E., Scotto, M., Succi, G. (eds.) XP 2007. LNCS, vol. 4536, pp. 115–122.
Springer, Heidelberg (2007)

9. Melnik, G., Maurer, F.: Multiple Perspectives on Executable Acceptance Test-Driven De-
velopment. In: Concas, G., Damiani, E., Scotto, M., Succi, G. (eds.) XP 2007. LNCS,
vol. 4536, pp. 245–249. Springer, Heidelberg (2007)

10. Meszaros, G.: XUnit Test Patterns: Refactoring Test Code. Addison Wesley, New York
(2007)

11. Mugridge, R., Cunningham, W.: Fit for Developing Software: Framework for Integrated
Tests. Prentice Hall PTR, Englewood Cliffs (2005)

12. Reppert, T.: Don’t Just Break Software, Make Software: How Story-Test-Driven-
Development is Changing the Way QA, Customers, and Developers Work. Better Soft-
ware 6(6), 18–23 (2004)

13. Varma, P., Anand, A., Pazel, D.P., Tibbitts, B.R.: NextGen eXtreme porting: structured by
automation. In: ACM Symposium on Applied Computing (SAC 2005), pp. 1511–1517.
ACM Press, New York (2005)

www.manaraa.com

XP Practices: A Successful Tool for Increasing

and Transferring Practical Knowledge in
Short-Life Software Development Projects

Gabriel Tellez-Morales

University of Edinburgh, School of Informatics, Edinburgh, UK
gtellez@exatec.itesm.mx

Abstract. The Gemplus and Axalto’s horizontal merge in 2006, brought
several challenges, resulting in a period of general instability in the newly
created company. As a result, the Gemplus Personalization Team for
Latin America put in place five of the twelve Extreme Programming
Practices as a tool for incrementing and transferring knowledge between
the two companies and among the existing/new members of the team.

In addition to a successful knowledge transfer, results from this newly
adopted approach, showed several benefits: collective code ownership,
development autonomy, cleaner/more readable code, and an increment
in development productivity, proving that in addition to being useful
for practical knowledge transfer, XP Practices are a successful ’tool kit’
to improve the software development process performance in short-life
projects.

Keywords: extreme programming, knowledge transfer, software devel-
opment approach, short-life software development, smart card, gemalto.

1 Knowledge Transfer and XP Adoption in the Industry

Knowledge Transfer is defined by the Institute of Knowledge Transfer [1] as
”the systems and processes by which knowledge, including technology, know-how,
expertise, and skills are transferred from one party to another, leading to inno-
vative, profitable or economic and social improvements”. According to the Asso-
ciation for University Research and Industry Links [2], among the best practices
to perform Knowledge Transfer, the most common/successful one is Pair Work-
ing. In the Software Industry, the action to work in pairs when coding software
is known as Pair Programming -one of the most popular practices of Extreme
Programming [3].

Based on its own definition, Knowledge Transfer is a key practice that top
management needs to embrace among the organization as part of its most im-
portant processes to improve intercommunication, to prevent unnecessary risks
(e.g. professional territoriality or ethnocentrism), or to improve the competitive-
ness of the company by adapting quickly and effectively when changing needs
appear [4], in other words, use Knowledge Transfer to create agile organizations.

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 155–160, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.manaraa.com

156 G. Tellez-Morales

In the industry, XP has proved to be one of the most powerful techniques
for generating high-quality software products in about half the time as solo
programmers [5,6], to reduce the training costs of new personnel [7], to ensure
more professional satisfaction & motivation, a more comfortable working envi-
ronment, a noticeable productivity increment [8], and information/knowledge
transfer among developers [7], helping to emphasize the developer’s responsibil-
ity, and to improve the trust relation between the members of the team [9].

However, success in XP’s adoption does not necessarily mean that all of the
twelve practices that conform the methodology have to be implemented in a
development team [3,4], but its success rely mainly on its members and their
managers [4]. In consequence, its implementation is affected by several factors
[7,10], being the usual ones: areas of expertise, programmers’ expertise, com-
plexity of the systems, internal conflicts, and generational differences.

2 XP Practices Implementation in a Newly Created
Smart Cards Entity

2.1 Gemplus and Axalto

Gemplus was a company dedicated to the Smart Cards business, from R&D,
manufacture, and personalization, to final customer services. From 2006 to 2007,
I worked as a Telecom Personalization Developer for the Latin America Region;
position based in the Cuernavaca Manufacturing Site where Telecom, Banking,
and Public Telephony Smart Cards were printed, assembled, personalized, and
packed. Gemplus horizontally merged in 2006 with Axalto (formerly Schlum-
berger Smart Card Department), and today the combined entity is known as
Gemalto. The merge of both companies brought several challenges that needed
to be solved: the incompatibility in technology and equipment, differences in
corporate culture, and redundant positions; resulting in a period of general in-
stability in the newly created company.

2.2 Overview of the Software Personalization Application Lifecycle

Gemalto is a product-based company where all information related to the
product, is saved in an internal Product Data Management (PDM) tool. Data,
electrical, and control (test) programs -known as the Software Personalization
Application (SPA)-, are part of the product. The role of the Personalization
Team was to provide its customers -Technical Consultants (TCs)- the SPA
through PDM, based on software specifications given by the final customers
(e.g. Mobile Network Operators) gathered by the TCs.

Smart Cards SPAs consisted in 3 parts: data, electrical, and control pro-
grams. The data program was a parser that processed the final customer input
files containing thousands of rows with data to be personalized on the SIMs.
The electrical program consisted in a set of Application Protocol Data Units

www.manaraa.com

XP Practices: A Successful Tool for Transferring Practical Knowledge 157

(APDUs) -ISO7816 communication format between the Smart Card and the off-
card applications. Control programs consisted in a set of APDUs where processed
data was sent to a personalized Smart Card to perform the corresponding tests.

2.3 Challenges in Gemplus’ Latin America Personalization Team

With the merger, the Personalization Process for all types of Smart Cards suf-
fered a great change for the newly created entity. Because of the incompatibility
in technology and equipment, the closing-down of an Axalto’s manufacturing
site at Maryland, and the great range of Axalto products in stock, Management
decided that Gemplus’ manufacturing sites in North and Latin America would
benefit in having Axalto’s personalization technology on-site. As a result, the
Axalto’s Personalization Team (Austin, U.S.A.), needed to transfer its knowl-
edge and its best practices in software development to the Gemplus’ Person-
alization Teams for North America (Pennsylvania, U.S.A.) and Latin America
(Cuernavaca, Mexico).

After taking the decision to transfer the existing knowledge, two developers
from each one of the Gemplus’ teams traveled to Austin in August 2006, with
the objective to be completely familiar with Axalto’s software development pro-
cess, to transfer this knowledge to their own teams, to replicate the complete
Axato’s Unified Personalization Security Infrastructure (UPSI) at the Gemplus
site where they belong to, and to be completely autonomous regarding Axalto’s
SPAs in a short-term time. These 4 challenges would demand more time from
the existing members of the team so management came up with the idea to hire
2 additional personalization programmers. New technologies, new members, and
moreover, pressure from top management to be an autonomous Personalization
Team, were things that required a new approach to perform well.

2.4 Implementation of XP Practices in the Latin America
Personalization Team

The use of XP practices was more emergent than planned. Typically, the soft-
ware development process was neither documented nor formally defined, but
rather, the manager and the developers used practices that were considered ef-
ficient before 2006. The motivation for using XP practices as a way to increase
and transfer knowledge among the team, was first of all, the general uncer-
tainty that the merger created in the general organization, and secondly, the
Software Personalization Application’s nature, being this: 1) the Smart Card
Personalization Process involves prototype technology where the final customer
requirements change rapidly, 2) the SPAs programs are small and more easily
managed through informal methods requiring a minimum amount of documenta-
tion, and 3) XP’s short development cycles proved to be the principal advantage
while developing SPAs, constantly receiving early feedback from our customers,
catching defects in an early stage of development.

www.manaraa.com

158 G. Tellez-Morales

Use of XP Practices

Pair programming. Pair programming was used all along the knowledge trans-
fer project, when coding the first Axalto’s SPAs, and when training newcomers
in the software development process, resulting in a collective code ownership in
the second half of 2007. The pairs consisted in two programmers with different
level of expertise: junior/intermediate and junior/senior. Even though, the use
of homogeneous pairs provides better results related to collaboration, using het-
erogeneous pairs is more suitable for training and knowledge transfer goals, as
discussed in [7].

40-hour rule. Because of the Telecom projects’ nature for Smart Cards Per-
sonalization is different from a common software programming project in the
sense that the average life-cycle is 2 weeks, the present effort found only about
20 hours per week for pair programming, instead of the recommended 40-hour
practice, so both programmers could handle from 2 to 4 projects per week.

Working environment. The setting for the team was designed to be a place with
desks shaped specifically for programmers to sit two on a computer looking to
the wall to avoid distractions. In the center, two round tables served as the setup
for the support person, the on-site customer (in our case, the TC), discussions,
or small meetings. Adjacent to this area was the machine used to release tested
code into the production system.

Customer on-site. The TC presence in the Personalization Site for clarifying
requirements was constant as XP mandates, sitting with the team, available the
entire working hours to answer questions, resolve disputes, and set small scale
priorities during the development of the SPA.

Small releases/iteration tracking. The PDM internal tool was used to log each
release and iteration of the SPA, constantly receiving early feedback from our
customers and catching possible defects in an early stage of development. The
PDM tool also helped to avoid the ’cowboy’ style of creating software programs
by providing the project manager, the TCs, and the developers, a constant SPA’s
lifecycle monitor.

2.5 Results

Axalto’s Unified Personalization Security Infrastructure (UPSI) was fully im-
plemented in November 2006 at the Gemplus’ Cuernavaca Personalization Site,
taking a two-month time period, 2 programmers, and constant help from Austin’s
Team to deploy it. In January 2007, the Gemplus’ Latin America Personaliza-
tion Team delivered its first two projects (Telefonica Moviles Mexico and Cable
& Wireless Jamaica) completely coded and tested in Axalto’s technology.

www.manaraa.com

XP Practices: A Successful Tool for Transferring Practical Knowledge 159

In March 2007, a manager and a senior programmer from the Axalto’s Per-
sonalization Team visited Cuernavaca to refine the knowledge transfer already
passed to the team in the August 2006 Workshop, using pair programming for
this purpose (one pair junior/senior, one pair intermediate/senior). In early April
2007 the Gemplus’ Personalization Team gained its autonomy from Austin’s
team by taking over the complete operation the Axalto’s Personalization Team
was doing for the Latin America region. The new Gemalto Telecom Personaliza-
tion Team for the Latin America Region was finally ready at this stage.

In the second half of 2007, the team started to create a collective code own-
ership in the projects where pair programming was put in place (e.g. Digicel Ja-
maica, Barbados, and Aruba) showing responsibility for the quality of the code
when the final SPA was not working according to the specifications, resulting ap-
proximately in 90% of software specification errors done by the TC. Productivity
gains were achieved through pairing because of the pair pressure effect that led to
intensive sessions that discouraged frequently distractions, and the constant code
review produced much cleaner and more readable code that was much easier to
modify and extend by the team. Additional productivity gains were achieved by
having fewer defects (almost 70%) in the SPA thanks to the short development
releases, resulting in continuous feedback from the customer.

In the last quarter of 2007, the pair programming practice descended in
the team. We transitioned from a process where pairing was used when writ-
ing/testing unknown code tasks were performed, into a process where pairing
was conducted only when making risky changes or while debugging existing code,
proving to be a successful practice for knowledge spreading, as discussed in [4].

In September 2007, the team had suffered from several changes: three new
additions and one loss. The three newcomers were people with an average age of
24 years and almost no previous job experience; after applying the new practices
on them, they reached autonomy in a 4-month time period. The loss of one
member was because he considered the new practices to be a danger for his
professional growth, although he already had 8 years in the company and he
was 45 years old, proving that generational differences and internal conflicts [10]
truly represent one of the problems that XP’s implementation faces.

3 Conclusion

Results from the experience described in this report, indicate that the XP prac-
tices approach for incrementing and transferring knowledge between Axalto’s
Team and the Gemplus’ Team, and among the existing/new members of the
Gemplus’ Team proved to be successful. In addition, the results also shown that
the development process for the SPAs was more productive as similar historical
projects undertaken by the members of the team. In relation to readability and
maintainability of the code, this was considered to be much improved by means
of constant code review, result of the pairing effect. However, results also shown
that generational differences and internal conflicts were two factors that affected
the XP practices implementation.

www.manaraa.com

160 G. Tellez-Morales

Because XP’s full adoption is usually exceptional, most companies adopt XP
only partially and they adapt XP to fit existing practices and philosophies
[11]. As a result, the recommendation is to use XP as a ’tool kit’ to improve
software development techniques and increase knowledge transfer among the
team [4]; recommendation, the Gemalto Telecom Personalization Team for the
Latin America Region put in place when dealing with organizational uncertainty.

Although Gemalto is a successful company, it lacks a top-management def-
inition and direction regarding software development methodologies (including
documentation standards) for its Personalization Sites around the world, result-
ing in a customized software development methodology adoption by the devel-
opment teams; customization that is common in the Telecom industry [4].

References

1. Board of the Institute. The Institute’s Standards for the Accreditation of Knowl-
edge Transfer Practitioners and Code of Professional Conduct. Institute of Knowl-
edge Transfer (2006), http://www.ikt.org.uk

2. Association for University Research and Industry Links,
http://www.auril.org.uk

3. Ramachandran, V., Shukla, A.: Circle of life, spiral of death: are XP teams following
the essential practices? In: Wells, D., Williams, L. (eds.) XP 2002. LNCS, vol. 2418,
p. 166. Springer, Heidelberg (2002)

4. Vanhanen, J., Jartti, J., Kähkönen, T.: Practical experiences of agility in the
telecom industry. In: Marchesi, M., Succi, G. (eds.) XP 2003. LNCS, vol. 2675,
pp. 279–287. Springer, Heidelberg (2003)

5. Williams, L.A., Kessler, R.R.: All I really need to know about pair programming I
learned in kindergarten. Commun. ACM 43(5) (2000)

6. Rasmusson, J.: Strategies for introducing XP to new client sites. In: Wells, D.,
Williams, L. (eds.) XP 2002. LNCS, vol. 2418, p. 45. Springer, Heidelberg (2002)

7. Arisholm, E., Gallis, H., Dyba, T., Sjoberg, D.I.K.: Evaluating pair programming
with respect to system complexity and programmer expertise. IEEE Transactions
on Software Engineering 33(2), 65–86 (2007)

8. Mannaro, K., Melis, M., Marchesi, M.: Empirical analysis on the satisfaction of
IT employees comparing XP practices with software development methodologies.
In: Eckstein, J., Baumeister, H. (eds.) XP 2004. LNCS, vol. 3092, pp. 166–174.
Springer, Heidelberg (2004)

9. Robinson, H., Sharp, H.: The characteristics of XP teams. In: Eckstein, J., Baumeis-
ter, H. (eds.) XP 2004. LNCS, vol. 3092, pp. 139–147. Springer, Heidelberg (2004)

10. Gittins, R., Bass, J., Hope, S.: A comparison of software development process
experiences. In: Eckstein, J., Baumeister, H. (eds.) XP 2004. LNCS, vol. 3092,
pp. 231–236. Springer, Heidelberg (2004)

11. Aveling, B.: XP lite considered harmful? In: Eckstein, J., Baumeister, H. (eds.) XP
2004. LNCS, vol. 3092, pp. 94–103. Springer, Heidelberg (2004)

www.manaraa.com

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 161–167, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Distributed Agile Development:
A Case Study of Customer Communication Challenges

Mikko Korkala1, Minna Pikkarainen1, and Kieran Conboy2

1 VTT Technical Research Centre of Finland
P.O.Box 1100, FIN-90571, Oulu, Finland
2 National University of Ireland Galway,

Newcastle Rd., Galway, Ireland
{Mikko.Korkala,Minna.Pikkarainen}@vtt.fi

kieran.conboy@nuigalway.ie

Abstract. The highly collaborative nature of software development emphasizes
the importance of efficient communication. Agile methodologies further accen-
tuate its importance. The importance of communication is further exacerbated
in distributed environments due to temporal, geographical and cultural dis-
tances. Despite this, little is known about communication in distributed agile
development. This results from the case study described in this paper suggest
that the efficiency of customer communication is dependent on the nature of the
actual customer relationship and the organizational policies. Weak customer re-
lationship and deliberate information hiding may result in inefficient communi-
cation and reduced efficiency of the communication media. Thus, in order to
enable meaningful communication, establishing an efficient customer relation-
ship can be considered paramount.

1 Introduction

Effective communication is considered vital in software development (e.g. [1]), and is
accentuated in agile and distributed development environments e.g. ([1-3]). Distrib-
uted software development is establishing itself as a commonplace approach in soft-
ware development e.g. [3-5]. Despite the opportunities, distributed development also
presents a host of challenges, and the research community has not yet developed a
thorough understanding of these challenges or how they can be overcome [4, 5]. De-
spite the importance of customer communication in an agile context, the empirical
knowledge on the subject seems to be scarce, though some evidence is available (e.g.
[6]). To address this knowledge gap, we conducted a study of customer communica-
tion in a globally distributed software development project that was using an agile
approach. Different communication channels were analysed based on the categoriza-
tion of Cockburn [2] and the principles of Media Richness Theory [7, 8].

2 Related Literature

Several benefits have contributed to the growing interest on distributed software de-
velopment, such as 24 hour, “follow the sun” development and maturation of the

www.manaraa.com

162 M. Korkala, M. Pikkarainen, and K. Conboy

technical infrastructure just to name a few [5, 9]. Despite opportunities, distributed
software suffers from similar problems that hinder collocated development. In gen-
eral, an overall understanding of the challenges and solutions has not been achieved
by the research community. [4, 5] Since the role of communication is paramount in
agile development it can be argued that it is even more significant in distributed agile
development. This challenge has been acknowledged and several approaches to miti-
gate the communication problems in distributed agile development have been pro-
vided e.g. ([3, 10]). Further research has attempted to determine the optimal balance
between formal and informal communication to resolve these issues [11].

2.1 Media Richness Theory and Communication Efficiency

Media Richness Theory (MRT) [7, 8] is perhaps the most notable theory of communi-
cation, despite the criticism e.g. [12]. MRT proposes that different media are more
efficient conveying different information and the selection of the medium should be
aligned with the needs of the task. According to MRT information can be equivocal,
thus prone to misunderstandings due to the possibility of multiple conflicting interpre-
tations of the same content [12] or uncertainty due to a lack of information [13].
Equivocality and uncertainty of the information can be high or low [7]. Communica-
tion media capable of clarifying ambiguous subjects are considered rich, while com-
munications requiring a long time to achieve a common understanding or that cannot
clarify different perspectives are classified as lean communications [7]. Rich commu-
nication channels should be used while managing ambiguous information, while
leaner channels are suitable for processing well understood messages and standard
data [7]. E.g. Cockburn [2] has described his perceptions of the effectiveness of dif-
ferent communication media. Both the categorizations presented by MRT [8] and
perceptions of Cockburn [2] are depicted in figure 1.

Media richnessLow High

Face-to-faceTelephoneEmail

Findings by Cockburn (2002)

Face-to-faceTelephone
Written addressed

documents
(note,memo,letter)

Unadressed documents
(flier, bulletin , standard

reports)

Categorization by Daft et al . (1987)

Video
conferencing

Fig. 1. Communication effectiveness of different communication media

Face to face communication is seen as the most efficient communication media,
while at the leaner end of the graph the effectiveness decreases along with the medi-
ums capability of conveying ambiguous information. Even though Cockburn’s [2]
classification is not based on scientifically validated findings, it has similarities to the
classification presented by Daft et al. [8].

www.manaraa.com

 Distributed Agile Development 163

3 Research Design

In this section, we describe the research methodology, data collection and analyzing
techniques along with the research context from which we draw our conclusions. We
conducted a single case study [14] in a large globally distributed organization. In this
case study we interviewed a single distributed project team within the organization
using a semi structured interview aiming to provide a consistent view of the customer
communication environment, the communication media used, and the resulting com-
munication challenges via qualitative data. The interviews were transcribed and ana-
lyzed using analysis approach presented in [15]. In addition, detailed field notes were
taken. MRT was used in the analysis of the interview data because it provides a well
defined framework and, thus, helps to focus the analysis. Communication during the
requirements engineering and software implementation were key phases in which the
analysis presented in this paper is focused. The case project involved two organiza-
tional units, one in the U.S. and the other in Ireland. The U.S. organization, the cus-
tomer for the Irish unit, followed a traditional waterfall model, while agility was
adopted by the Irish organization. There were two distinct customer representatives in
the U.S. organization. The project manager considered the business analyst to be the
main customer, while the Irish architect saw his U.S. counterpart as the main source
of information. The project manager was responsible for management issues, while
the architects communicated about technical issues. In addition, the use of various
agile practices in the Irish unit was analyzed. We found that from the customer com-
munication intensive practices Sprint Planning, Sprints, and Sprint Reviews were at
use at the time of the interview.

4 Analysis and Results of the Case Study

4.1 The Use of Customer Communication Media in the Case Project

Face to face: Neither the project manager, the architect nor the team members in Ire-
land participated in face to face meetings with the customer organization. Face to face
meetings were held only in the early phase of the project. The goal of those meetings
were to define requirements for the project: (Project manager): “the first kind of cycle
of those [the initial upfront design cycles] were all done on site, so the analyst would
have spent a couple of weeks on site.”

Video conferencing: Video conference meetings were occasionally used as a media
for high level discussions between the project management and the customer com-
pany. Project manager: ”we would have the occasional programme meeting. So they
would attend, … but it wouldn’t be a weekly occurrence”. The use of videoconfer-
ences decreased after the initial stages of the project: “So we’ve probably used it [vid-
eoconferencing] more in the analysis phase than we do now on the ongoing phase.”
(Project manager) The architect or software developers in the team, however, did not
use videoconferencing with the U.S. team or architect.

Telephone: Telephone communication was used extensively in the case project but
there was a lack of teleconference meetings between the developers and the customer

www.manaraa.com

164 M. Korkala, M. Pikkarainen, and K. Conboy

team. Project manager used telephone communication intensively: “[We used the
telephone] All the time. That’s pretty much the standard fare.”(Project manager) The
discussions focused on management topics: “A lot of the time would be, …some of
the planning type issues. So,…. trying to get locked down on, maybe QA dates, or QA
resources…but some design issues were also discussed in some of the meetings:
“there are design discussions, in terms of, you know, our odds, where we have
maybe specific technical issues where we need to bring a broader audience, we
would just set up a meeting over a dial-in.” Also the architect used the telephone
regularly to communicate with the U.S. counterpart:” “I have a conference call twice
a week. I probably talk to the customer everyday.” Even though communication was
active, specific issues or requirements were not solved in ad hoc manner. Instead,
separate meetings were organized. Architect: “we have …. weekly meetings, but gen-
erally meetings will be set up a couple of days in advance, talking about a specific
problem or issue or requirement.” The developers were deliberately excluded from
direct customer communication during the Sprints as explained by the project man-
ager: “actually we’re trying to insulate the developers as much as possible. So, the
developers would attend my weekly meeting. But really, outside of the daily stand-
up, and the iteration planning meetings, and the weekly meeting, they’re effectively
working.” This decision aimed to ensure that the developers could work as effectively
as possible: “So, we’re trying to give them as much, you know, development time as
possible.” (Project manager) The developers were not allowed to have direct commu-
nication with the customers, and the following comment indicates the reason for that:
(Architect):”No, well, that’s one thing we’ve tried to … because if we get too much..
I find it’s a two-way thing. If you try and contact them [customers] too much from a
developer perspective, they’ll start contacting you guys too much (Developer): Yeah,
I mean the project manager wants development team developing and not going to
meetings.” Setting limits for communication is against the principles of agile devel-
opment. Direct customer communication was seen as a time consuming task decreas-
ing the time available for product development.

Email and wiki: A wiki and emails were used as an asynchronous communication
channel. Wiki was the most useful communication channel in the implementation
phase of the project largely due to the distributed nature of the effort. Most of the con-
tents on the wiki were technically oriented: “So, some of the stuff like the, high level
architectural diagrams, and … components that make up the system… are on the
wiki.”(project manager). In addition higher level information was available in the
wiki, as indicated: “…you know, some of the high level planning stuff is on the wiki
as well.”(project manager). The use of the wiki was however not free from problems:
“It’s almost getting out of control in terms of navigation” (Developer) Architects also
used email as a decision making medium considering technical details.: “(Inter-
viewer): And have you had many conflicts because of some e-mail communication?
(Interviewee, developer): No, not really”. It can be assumed that the technical aspects
discussed with the customer were unambiguous in nature due to the apparently low
level of misunderstandings. However, agreeing on technical decisions took a while:
“Architect: but I’d say most requirements, I guess they do take a while, I guess, (-)
still be ongoing”. Figure 2 summarizes the use of different communication channels
between the U.S. customers and Irish counterparts. The amount of use of different
channels is indicated by (+) signs.

www.manaraa.com

 Distributed Agile Development 165

Project
manager

Business
Analyst

Video (+)

Telephone (++)

Wiki/email (++)

ArchitectArchitect

Telephone (++)

Wiki/email (++)

U.S IRE

Fig. 2. The communication channels and their usage in customer communication

4.2 Customer Communication Challenges in the Case Project

Some of the challenges, of customer communication in a distributed context which
appeared in the case study, are in line with the challenges presented by Ramesh [11].
The Irish organization worked with fixed up-front defined requirements which
according to [11] is often the case due to the distributed software development envi-
ronment. One would argue that upfront defined fixed requirements should be less am-
biguous than deliberately vague agile requirements. This however did not seem to be
the case in this project. “they’re not great customers, because they can just keep
talking at a very high level without actually giving detailed requirements” (Architect).
The lack of detailed information of product requirements resulted into radical proce-
dures: “we have been coming up with our own detailed requirements, trying to un-
derstand what they need, use our experience to understand that” (Architect). Even
though telephone, a relatively rich communication medium (according to the MRT
capable of resolving ambiguous issues), was extensively used among the project man-
ager and customer group it did not seem to help developers and architects to analyse
the requirements. One reason behind the situation may be the deliberate information
hiding exercised by the customer organization. The following comment also reveals
the reasons for restricting information “Architect: It’s these physical permissions [to
access code implemented in U.S.], but to solve those problems is a political
problem, … we’re working for a part of the organization which has typically worked
by themselves… we’re on a different domain, different (-) directories, …so we’ve had
some issues like that, and to join them is a very political issue. A lot of higher-up
decisions need to be made that this part of that organization is going to start doing
projects like this…And also because it’s financed, and it’s sensitive data, they always
try to hide it”.

The customer company practiced process- vs. people-oriented control, rather than
people- vs. process-oriented control as described by Ramesh [11], by using milestones
and traditional requirements specification processes instead of continuous people
driven communication. “Interviewer: Are the customers involved [in iteration plan-
ning]? (Architect): No. They tell us, they’ve already told us the high-level milestones
that need to be delivered”. In addition, customer relationship between the team in
Ireland and the US customers was relatively weak hindering the teams from operating
with a common purpose “The customer’s been quite disengaged in this project, I’d
say”(Architect). Despite the challenges, customer communication was considered

www.manaraa.com

166 M. Korkala, M. Pikkarainen, and K. Conboy

sufficient, though viewpoints varied between the architect and the project manager:
“It’s sufficient for the level we’re at. Again, if the customer was more focused on
delivery, we’d probably need more [communication].” (Architect). “as I said, we are
communicating pretty much on a daily basis.” (Project manager). Despite the range
of different and relatively rich communication media used in the case project (accord-
ing to MRT), the abovementioned challenges remained unsolved. Thus, we claim that
weak customer relationship and organizational politics that restrict information shar-
ing may cause any communication medium to become inefficient. Instead of focusing
on the selection of appropriate communication channels, the organizations should first
focus on creating an efficient customer relationship and environment that enables ef-
fective communication.

5 Conclusions and Limitations

Efficient communication is one of the most essential factors in development (e.g. [1]),
and is even more important in agile or distributed environments [5, 11]. We con-
ducted a study on customer communication in a large globally distributed software
development company. One of the units worked as a customer for the other organiza-
tion and provided requirements for them. The customer organization was following a
traditional approach while agile elements were applied in the other unit. We analyzed
the use of different customer communication channels following the propositions of
Media Richness Theory [7, 8] and categorization presented by Cockburn [2]. We
found that several different communication channels were utilized, but the central
challenges for communication were not resulting from the use of communication me-
dia themselves, but from the fixed requirements and process oriented control. We
found that the customer was not involved in the implementation due to the lack of
trust and the customer organization’s policies hindered information sharing, thus re-
sulting into deliberate information hiding. Detached customer not actively participat-
ing to the development and organizations unwillingness to share relevant information
may result in situation in which the potential efficiency of different communication
media becomes weak. Thus, organizations following distributed agile development
should focus on establishing an efficient customer relationship, enabling more mean-
ingful communication. However, the possible conflicts between the traditional and
agile approaches may have had an effect on customer communications. This could be
elaborated on in future research.

References

[1] Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley, Upper
Saddle River (2000)

[2] Cockburn, A.: Agile Software Development. Addison-Wesley, Indianapolis (2002)
[3] Layman, L., Williams, L., Damian, D., Bures, H.: Essential communication practices for

Extreme Programming in a global software development team. Information and Software
Technology 48, 781–794 (2006)

[4] Damian, D., Zowghi, D.: Requirements Engineering Challenges in Multi-site Software
Development Organizations. Requirements Engineering Journal 8, 149–160 (2003)

www.manaraa.com

 Distributed Agile Development 167

[5] Komi-Sirviö, S., Tihinen, M.: Lessons Learned by Participants of Distributed Software
Development. Knowledge and Process Management 12, 108–122 (2005)

[6] Korkala, M., Abrahamsson, P., Kyllönen, P.: A case study on the impact of customer
communication on defects in agile software development. In: AGILE 2006, pp. 76–86
(2006)

[7] Daft, R.L., Lengel, R.J.: Organizational Information Requirements, Media Richness and
Structural Design. Manage. Sci. 32, 554–571 (1986)

[8] Daft, R.L., Lengel, R., Trevino, L.K.: Message Equivocality, Media Selection, and
Manager Performance:Implications for Information Support Systems. MIS Quarterly 11,
355–366 (1987)

[9] Gorton, I., Motwani, S.: Issues in co-operative software engineering using globally
distributed teams. Information and Software Technology 38, 647–655 (1996)

[10] Kircher, M., Jain, P., Corsaro, A., Levine, D.: Distributed eXtreme programming. In: XP
2001, pp. 66–71 (2001)

[11] Ramesh, B., Cao, L., Mohan, K., Xu, P.: Can distributed software development be agile?
Commun. ACM 49(10), 41–46 (2006)

[12] Dennis, A.R., Valacich, J.S.: Rethinking media richness: Towards a theory of media
synchronicity. In: HICSS 1999, p. 1017 (1999)

[13] Daft, R.L., Weick, K.: Toward a Model of Organizations as Interpretation Systems.
Academy of Management Review 9, 284–295 (1984)

[14] Yin, R.K.: Case Study Research Design and Methods. Sage Publications, Thousand Oaks
(1994)

[15] Miles, M.B., Huberman, A.M.: Qualitative Data Analysis:An Expanded Sourcebook, 2nd
edn. SAGE Publications Inc., Thousand Oaks (1994)

www.manaraa.com

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 168–173, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Customer and User Involvement
in Agile Software Development

Karlheinz Kautz

Department of Informatics, Copenhagen Business School,
DK-2000 Frederiksberg, DK
Karl.Kautz@cbs.dk

Abstract. Studies of user involvement in agile development are very scarce.
We provide a case study of how user involvement took place in a large agile
project, which utilized the agile method eXtreme Programming. Planning
games, user stories and story cards, working software and acceptance tests
structured the user involvement. We found genuine customer and user involve-
ment in the form of direct and indirect participation in the project. The involved
customer representatives played informative, consultative and participative
roles in the project. This lead to their functional empowerment i.e. the users
were enabled to carry out their work to their own satisfaction and in an effec-
tive, efficient and economical manner.

Keywords: Agile software development, user involvement, practice study.

1 Introduction

Agile software development (ASD) insists on the customer taking control and being
constantly involved and stresses a collaborative partnership based on daily interaction
between developers and the customer [1]. There are however only a few, empirically
sound studies on ASD, and even less on user involvement in ASD [2]. These studies
of agile practice have shown that customer representatives might have decision
power, but only a limited understanding of the users’ needs, they might not be the
actual users of the software to be developed, who in turn might have the necessary
knowledge, but not the authority to decide on system features [2]. Users rarely take
the role of the customers [4]. The customer role might even been carried out by sub-
stitutes from the development organization such as product managers or marketing
staff [5]. This is the background for our research, which attempts to answer the ques-
tion how and with which effect customers and users participate in agile development
and design activities in practice.

2 Research Method

The research is qualitative. It is based on an empirical case study of a commercial agile
development project in a large German public sector organization, called WaterWorks

www.manaraa.com

 Customer and User Involvement in Agile Software Development 169

(WW), performed by a software company, called AD. The data was collected in 12
semi-structured, open-ended interviews which included nearly a third of the project
team. The interviews were tape-recorded and subsequently transcribed. For the data
analysis a software tool (NVIVO7) was used. The interview data was supplemented
with company and project documents. The data collection, coding of the data, and data
analysis were guided by the 4 value pairs underlying agile development: (1) individu-
als and interactions over processes and tools; (2) working software over comprehensive
documentation; (3) customer collaboration over contract negotiation; and (4) respond-
ing to change over following a plan. The data was in particular analyzed with regard to
customer and user involvement.

3 The Case Setting: The OMS Project

The project was concerned with the development of an operations management sys-
tem (OMS). The system was developed with a graphical user interface and a backend
to interface the technical infrastructure as defined by an underlying ERP system. The
project was organized in 4 subprojects to provide support ranging from customer
management to the maintenance of a duct system. At the time of the project AD con-
sisted of about 25 employees, 20 of them being developers, and based its development
approach on XP [6]. The formalized method includes planning techniques called
planning games, user stories and story cards to specify user requirements, onsite cus-
tomers to support customer-developer communication, daily, stand-up meetings of the
project team to support team communication, pair programming, re-factoring, collec-
tive ownership, continuous integration and testing to develop the software proper and
tuning workshops to improve the development processes regularly. AD extended the
method with some project management processes to cater for larger projects such an
overall project plan, formal reporting mechanisms and a formal contract based on a
requirements specification called realization concept, which had been produced by the
customer. The project was organized in 2 phases. In a first 12 months exploration
phase prototypes catching requirements and possible solutions were developed. This
led to the development of the realization concept by the customer organization and
their decision to contract AD also for the development of the OMS proper. In this
main development phase a team of about 12 development staff with multiple roles
such as project manager (PM), subproject manager (SPM), analyst, customer contact,
and developer worked onsite in a WW building. A sophisticated management struc-
ture with one SPM acting as contact person from AD and one acting as onsite
customer from WW for each of the subprojects was, in addition to 2 overall project
managers, 1 from each company, established. The WW SPMs and onsite customers
were managers and team leaders in operational divisions and as such also OMS users.
They were by and large, however not the whole time onsite. The project also com-
prised a varying number of other users, representing operational staff from different
divisions. They were mostly actively involved in feedback and testing activities.
When this study was performed phase two had been going on for 4 months. Respond-
ing to an inquiry during our analysis AD stated that the project ended 10 months later
on time and budget with all parts of OMS being operational.

www.manaraa.com

170 K. Kautz

4 An Analysis of the OMS Project

The project was described by both the customer and the supplier as a success. One
user based on his experience, had become a full member of the development team.
Otherwise, customer and user involvement took place on an ongoing basis; the plan-
ning games; story cards, the working software as well as the acceptance tests struc-
tured the continuous day-to-day-contacts, communication and collaboration.

4.1 Planning Games, User Stories and Story Cards

At the start of phase two a number of different documents existed, which were all
comparable short and concise. The planning games at the beginning of each iteration
were based on the overall realization concept and requirements lists. These were
largely produced by the AD PM and some of the AD SPMs. They developed these
documents with input from the onsite customers. The story cards were solely pro-
duced and estimated by the developers. The developers and the customers then to-
gether prioritised these cards. In this context a WW SPM explained his own role: “We
are communicators to back up the kind of system we’ll get. My management has put
me here 100%, and when I get a call or an email, I show up and then we just discuss
the matter.” Another WW SPM supplemented: “But it’s not just that the SPM devel-
ops his requirements at his own discretion, he holds a strong contact with the people
from his division. He, quasi, sucks the requirements out of the division and carries
them into the project. He then has to prioritize and has to look whether this is in his
budget.” An AD SPM talked about the difficulties of converting the requirements into
design (“it’s not easy to find out from the WW people what they want”) and declared
that design is the task of the developers. However, the design is always developed
with close participation of the WW SPMs and other users and always under the man-
date of the WW SPMs. Another AD SPM went even further and said: “Somehow they
develop the tool themselves; we have not developed anything, which we invented
ourselves and we always communicated to all.” This form of customer collaboration
apparently provided some structure to cope with the complexities of a comparatively
large ASD project, while leaving room for less structured, but necessary collaboration
as well. That is to say, when implementing the story cards, it became obvious that
some additional collaboration was needed. One WW SPM estimated that contact with
the onsite customer was necessary for nearly every story card. He put forward that
maybe two thirds of a card’s contents was clear and said “ 60% are there and 40%
have to be directly coordinated, 20% in the middle of the iteration and 20% in the
end, the users look at it and then they find out that their requirements weren’t under-
stood the way they meant it, but that’s normal.” This illustrates the importance of the
working software for the development and design process.

4.2 Working Software

The presentations of working software were identified as another basis for customer
and user involvement. In the project a first software release was provided after 3
months with the others to be delivered every 3-6 months. Each release was organized
in iterations of 3-6 weeks duration. The AD PM described how the working software,

www.manaraa.com

 Customer and User Involvement in Agile Software Development 171

which was produced story card by story card, attracted the WW SPMs and how they
seamlessly participated in the development process: “Some of the SPMs are here
nearly on a daily basis and we have the weekly meeting; we can already before an
iteration is released fix things, and we show them and have peace.” The close in-
volvement needed getting used to as one AD SPM expressed: “As a developer one is
not that used to that one sits at the customer site and has a customer who passes by
every day, there are moments where this is disturbing.” Feedback about and change
requests for the software design were brought forward by the onsite customers in
weekly feedback loops, which were built into an iteration. The AD PM explained:
“And then after a week the customer rep is back and wants to see what happened
during the week and he gets the information and provides first feedback.“ This had
the following consequence: “Often we show the customer rep something once a week
and then he’s going ‘well, I thought this would be different’. Thus there are always
small changes.“ as one developer put it. As presentations to one onsite customer were
not considered sufficient, the working software was also presented to larger groups of
prospective users. The AD PM stated: “Well, at latest when an iteration is finished,
sometimes already in the middle presentations are run for users. Not always in front
of many users, but the customer SPM gets some people together and says: ’Here,
look, do we develop in the right direction?’“ In addition, the onsite customer repre-
sentatives regularly performed ‘road shows’ with the working software in the user
departments to collect feedback and ideas and proposals for improvements. The AD
SPMs also sought direct contact with the users and one of them reported: “Then I
seated myself for two weeks in the duct operation station to look how well the soft-
ware actually fitted the operation.” These frequent feedback loops had the effect that
minor misunderstandings were caught and dealt with as changes early before they
could grow into something larger. But the working software also brought to light
some problems of participatory design as according to one AD PM: “We could not
understand where the discontentedness of the customers’ SPMs came from until we
found out that they had an expectation that we should do more than we said, they
have the attitude ‘here you have my problems, surprise me’ … but that’s not how it is
done here.”

4.3 Acceptance Tests

The AD PM explained that “Between two iterations there is always a test phase,
which is a post activity of the preceding iteration and there is a concept phase, which
is the preceding activity of the next phase.” He confirmed that the acceptance tests
were run by the customer, meaning that the customer had the responsibility and deci-
sion power in these tests. The tests were performed according to a protocol and “they
always comprise end users”. Before an acceptance test was performed less formal
preparations took place often triggered by a WW SPM. A typical acceptance test was
portrayed by some AD SPMs: “… a test lasts just one day … then two or three divi-
sional managers and other people, who own the task and who have to work with it,
are present and they test it then.” “I note down the bugs on a bug list, monitoring the
acceptance test otherwise is the responsibility of the WW.” “During the acceptance
test … no, the developers usually do not participate in those.” There were however
exceptions from this rule and in some cases also developers participated in thetests.

www.manaraa.com

172 K. Kautz

The results of these tests were described by the one AD SPM as “How many mistakes
we found, but we got quite some encouraging feedback; first of all they could imagine
to work with it, they liked it better then the [ERP-based solution].” The WW SPMs
confirmed this approach and said: “Well, we have the acceptance tests before an
iteration is approved.” “The iterations help us to get in touch with the users and get
something tangible.” “The test phases are decisive …and they are coordinated with
the staff council.” By and large they were content with this form of participation and
considered themselves as part of the development.

5 Discussion and Conclusion

We base the further discussion of our case on concepts introduced in three writings.
Clement [7] argues that the purpose of user participation is user empowerment. He
distinguishes between functional and democratic empowerment. The former means
that the users should be able to carry out their work to their own satisfaction and in an
effective, efficient and economical manner. Their participation in the design process
supports this objective. Democratic empowerment means that they should have the
mandate to participate in decision-making. We can determine that functional empow-
erment has been achieved. All stakeholder groups reported that they were content
with the project outcome. We have no evidence for any democratic empowerment
other than the staff council’s peripheral involvement and the onsite customers’ author-
ity to take decisions concerning their staff’s and their own workplaces. Mumford [8]
classifies two different forms of involvement, namely direct and indirect user partici-
pation, where the user is represented by some kind of intermediary. Direct and indi-
rect participation are defined through the users’ direct participation in the project
(team) or their direct or indirect contact with project staff from the development or-
ganization. We found both direct and indirect participation: the onsite customers were
WW staff, who themselves would work with the future system to a certain extent:
they exerted direct participation. They were also intermediaries for other users, f. ex.
operative staff in the customer division and the duct net division. These employees
indirectly participated when they commented during presentations or when they pro-
vided their viewpoints or descriptions of their work processes to the onsite customers.
They have however also participated directly when they tested the results of the itera-
tions or when they were observed or conferred the developers, who were in contact
with them directly in the divisions as f. ex. the developer, who visited and stayed in
the duct net division while the result of an iteration was in operation. Damodaran [9]
differentiates three user roles in the design and development process. The user can
play an informative, consultative or participative role. As informants users merely
provide information about their work and might be the objects of some observation.
In a consultative role they are asked to comment on preset design solutions. In a par-
ticipative role they actively participate in the design process and have decision-
making power regarding the solution. Although one of the WW SPMs went so far to
report to management that in the project only things, which the employees wanted,
were done, a more differentiated picture appears when we analyze the different user
roles. Those users in the divisions, who were not also onsite customers, had the role
of informative or consultative users. They provided both the onsite customers and the

www.manaraa.com

 Customer and User Involvement in Agile Software Development 173

development staff at AD with information about their work, their needs and their
preferences. Some of them were observed during their work by some developers and
they provided their comments during presentations and tests. Although this informa-
tion and comments were taken into account and many of them were realized, it goes
too far to consider this a participative role as it were solely the onsite customers, who
had a decision making mandate. They, thus, as so far as their positions as (a minority
among the) future users were concerned, were clearly in a participative role, although
they f. ex. did not themselves write the user stories and the story cards. However, no
design decision could be taken without their agreement. Beyond their participative
role, the onsite customers also had informative and consultative roles.

In summary, our case description and analysis contributes to an understanding of
user involvement in agile development in practice. Prior research has shown that end
users rarely take the role of the customers, sometimes the customer is even repre-
sented by a development organization’s own staff [3,4,5]. In contrast, we found genu-
ine customer and user involvement in a successful agile development project. While
further academic research into user involvement in ASD is necessary, our study might
serve as an inspiration for practitioners, who want to firmly establish user involve-
ment in ASD in practice.

Acknowledgements. I like to thank R. Klischewski, who collected the data with me,
S. Matook, who was involved in the analysis and H. Sharp, who provided literature,
which documents empirical studies of user involvement in agile development.

References

1. Highsmith, J.: Agile Software Development Ecosystems. Addison-Wesley, Boston (2002)
2. Dybå, T., Dingsøyr, T.: Empirical Studies of Agile Software Development: A Systematic

Review. Information and Software Technology 50 (2008), doi:10.1016/j.infsof.2008.01.006
3. Robinson, R., Sharp, H.: The Social Side of Technical Practices. In: Baumeister, H.,

Marchesi, M., Holcombe, M. (eds.) XP 2005. LNCS, vol. 3556, pp. 100–108. Springer,
Heidelberg (2005)

4. Martin, A., Biddle, R., Noble, J.: The XP Customer Role in Practice: Three Studies. In: Pro-
ceedings of the 2nd Agile Development Conference, Salt Lake City, USA (2004)

5. Robinson, H., Sharp, H.: XP Culture: Why the twelve practices both are and are not the
most significant thing. In: Proceedings of the Agile Development Conference, Salt Lake
City, USA (2003)

6. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd edn. Addi-
son Wesley Professional, Boston (2004)

7. Clement, A.: Computing at Work: Empowering Action By ‘Low-level’ Users. Communica-
tions of the ACM 37(1), 52–63 (1994)

8. Mumford, E.: Designing Human Systems for New Technology - The ETHICS Method,
Manchester. Manchester Business School, UK (1983)

9. Damodaran, L.: User involvement in the systems design process – a practical guide for us-
ers. Behaviour and Information Technology 15(6), 363–377 (1996)

www.manaraa.com

Integration of Extreme Programming and

User-Centered Design: Lessons Learned�

Zahid Hussain1, Harald Milchrahm1, Sara Shahzad1, Wolfgang Slany1,
Manfred Tscheligi2, and Peter Wolkerstorfer2

1 Institute for Software Technology, Technical University Graz, Austria
zhussain@ist.tugraz.at

2 CURE - Center for Usability Research & Engineering, Austria
wolkerstorfer@cure.at

Abstract. One of the most important factors for the success of a soft-
ware application is user acceptance by having a usable user interface.
Since summer 2007 in our project regarding mobile phone application,
we have combined Extreme Programming and User-Centered Design
methodologies aiming to deliver usable and useful software. The HCI
instruments we have integrated are: user studies, personas, usability ex-
pert evaluations, usability tests, automated usability evaluations in the
form of extended unit tests, as well as lightweight prototypes. After one
and half years we conducted a retrospective full-day workshop with our
off-site usability engineer to reflect on the adopted process regarding the
HCI instruments. This paper presents those reflections - the lessons that
we learned.

Keywords: Agile Methods, Extreme Programming, Usability, User-
Centered Design, Mobile Application.

1 Introduction

One of the most important factors for the success of a software application is
user acceptance by having a usable user interface. Extreme Programming (XP)
- one of the mostly adopted processes of agile methods in the industry - aims
to continuously deliver quality software by satisfying the customer. The Agile
Manifesto does not clearly mention that the customer should be an end-user
and rarely end-user takes the customer role [1]. There is also the evidence that
coordination only with the customer does not ensure good usability [2]; which
can result in lowering the user acceptance rate. User-Centered Design (UCD)
is an approach to user interface design focusing on end-users throughout the
planning, design, and development stages of a product [3].
� The research herein is partially conducted within the competence network Softnet

Austria (www.soft-net.at) and funded by the Austrian Federal Ministry of Economics
(bm:wa), the province of Styria, the Steirische Wirtschaftsförderungsgesellschaft
mbH. (SFG), and the city of Vienna in terms of the center for innovation and
technology (ZIT).

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 174–179, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.manaraa.com

Integration of Extreme Programming and User-Centered Design 175

Recently there has been an increasing interest in integrating agile and user
experience/UCD methodologies both in the agile community and the HCI com-
munity. In fact there were special tracks and dedicated workshops in the Agile
2008 conference1 as well as in the CHI 2008 conference2. Being integrated into
agile methods, UCD/usability engineering helps to reduce the risk of running
into wrong design decisions by involving real users, and results in increasing the
acceptance of software applications [4]. We have integrated XP and UCD in our
project regarding a multimedia streaming application for mobile phones since
summer 2007. The end-users are indirectly involved in the process by our use
of different HCI instruments like user studies, personas, usability expert eval-
uations, usability tests, extended unit-tests, and lightweight prototypes [5][6].
Recently a one-day retrospective workshop was conducted which was attended
by all the team members and the usability engineer to reflect on the integrated
process as well as on the HCI instruments after introducing them at the start
of our project. This paper mainly describes those lessons learned. The next
section describes the related work of combining Agile/XP with UCD method-
ologies. Section 3 describes the project context. Section 4 gives details about the
retrospective reflection workshop regarding the HCI instruments used and the
adopted process. Section 5 concludes the paper with future work.

2 Related Work

The integration of agile methods with HCI practices was discussed by Kent
Beck and Alan Cooper in 2002, concluding that both interaction design and XP
have strengths to be combined [7]. There are several studies examining various
aspects of the integration of both methodologies. Patton [8] has described the
way of incorporating interaction design in an agile process. Chamberlain et al.
[1] have conducted an ethnographic field study to explore a framework for in-
tegrating agile methods with UCD. In their case study, McInerney and Maurer
[9] interviewed three UCD specialists for integrating UCD within agile methods
and reported positive feedback. Ferreira et al. [10] investigated several projects
for the relation of UI design and agile methods. Fox et al. [11] also conducted a
qualitative study that describes how the agile methods and UCD are integrated
in industry. Obendorf and Finck [12] report their experience of combining XP
and scenario-based usability engineering. The HCI instruments that we have
used in our project and the integrated process are described below.

3 The Project Context

Since summer 2007, we are working on a project to develop a multimedia stream-
ing application for mobile phones. The project is based in Austria and will end
in 2010. The team consists of six full-time regular members, five developers and
1 http://www.agile2008.org/
2 http://www.chi2008.org/

www.manaraa.com

176 Z. Hussain et al.

a product manager who plays the role of the “on-site customer”. One dedicated
off-site usability engineer of a partner usability research center is also included
in the team regarding usability guidance. The application enables a user to per-
form content-based search for audio and video content in large digital archives
and play it on a mobile phone [6].

4 Retrospective Workshop

Subsections below describe the HCI instruments and the reflections about them
discussed in the retrospective workshop.

4.1 User Studies

User studies are the instrument for getting knowledge about end-users. The pur-
pose of user studies is to uncover user needs, desires and contexts of use. In an
agile UCD process they can be used to develop new or refactor the existing
personas as well as in the user-story creation process. In our process we em-
ployed user studies in the form of laddering interviews and field studies. The
laddering interviews were conducted in autumn 2007 and the results were pub-
lished in [13]. Currently, a large field trial study is being conducted with 150 real
end-users spread throughout Austria. The trial study includes field trials with di-
ary studies, contextual interviews, laboratory usability tests, questionnaires, and
focus group.

4.2 Personas

Personas are archetypical figures - fictitious characters created as a tool to repre-
sent a typical user group. In our process, initial personas were created based on
initial user studies and would be iteratively refactored when the new user studies
suggest some changes. The personas helped to gear the project towards the on-
site customer and end-users. However, the initially developed personas were not
satisfactorily distributed to either the development team or the customer-on-site
by the usability engineer. In addition to that, it was the fault of the development
team and the on-site customer because they did not give much credit to the two
personas which were provided. Nevertheless they got in touch with them instead
of neglecting them fully. It was concluded that personas should be properly in-
troduced to the team so that they will be present consciously or unconsciously
in the minds of the team members during planning, developing or undertaking
any decision process.

4.3 Lightweight Prototypes

We make use of two different types of mock-ups; low fidelity paper mock-ups
and high fidelity mock-ups and get them evaluated by the customer. As both
the developers and the customer have been increasingly gaining knowledge about

www.manaraa.com

Integration of Extreme Programming and User-Centered Design 177

usability engineering, evaluating paper prototypes with the customer is good on
one hand but on the other hand the customer has now become an expert user
instead of a casual or novice user. So there is always a chance to ignore the actual
needs of real casual end-users. We have mitigated this risk by having more ad hoc
input from the usability engineer and suggested to conduct a formal usability
test with at least 10 end-users after every release, i.e., quarterly. For special “ad
hoc” questions instant messaging is used to gather HCI feedback within a short
time frame from the usability engineer regarding stories or mock-ups. It would
have been more beneficial if the usability engineer would have been present on-
site to quickly give his feedback, and instead of developers he should do the
prototyping not only with the customer but also with at least a few end-users.

4.4 Usability Expert Evaluations

Expert usability evaluations are reviews conducted by experts. In our project,
usability expert evaluations by the off-site usability engineer are given by instant
messaging, email, and video-conferencing; usually in the form of an ad hoc input.
In our project usability input is needed at different timings: when writing UI
related stories and before or during implementation of the stories, as well as after
implementation. As the customer writes stories with the help of a developer, so
it is decided that when UI related story is written, it should be sent along with
the refined paper prototype to the usability engineer at least three days before
the iteration planning. The advantage is that during the iteration planning you
already has the usability tested story. When technical questions arise during
the implementation - for instance that a certain demand from the usability side
would cost too much, it is advised to call the usability-engineer or have a short
video-conference. As a result you should get far less usability-fixes to make. For
us two hours to one day duration is perfect for this quick feedback of the usability
engineer. After implementation (when it is deployed) it can be delayed for days
to get usability feedback. It was suggested that the usability engineer should
give his feedback in the form of stories along with wireframes when he thinks
they are needed, so he should be trained in writing stories with the help of one
of the developers.

4.5 Usability Tests

Usability tests involve real users testing an application. We conducted a formal
usability test with 10 users in January 2008 which was also attended by two
developers as observers [6]. It was noticed that the mindset of developers changed
dramatically when seeing real users handling the application as they observed
the users, the developers who attended the usability test got more biased towards
user-centered thinking than the others. When it comes to the results of the test
there was an agreement that the test was too early in the project to tell us a
lot about the usability problems of the application as the system was very fast
moving at that time, changes in features were high because of new demands
from the stakeholders. Furthermore the reporting period was too long. Until the

www.manaraa.com

178 Z. Hussain et al.

report arrived, the application had so much changed that the recommendations
were partially obsolete. Therefore, smaller tests after every 3 iterations were
recommended. Since the system is a very fast moving target, not always the
entire system should be tested. Big formal tests were recommended after every
release when major changes are expected.

4.6 Extended Unit Tests

Extended unit tests root in automated usability evaluation. Our intended ap-
proach extends the XP unit tests by adding usability-specific test cases. Code
based tests are enhanced with semantics to achieve this goal. For example code
based tests can check against guidelines like the usage of capital letters on but-
tons or the correct label of a button. So far we haven’t focused on extended unit
tests because of priorities to other areas but intend to work in this direction
from the second quarter of this year.

5 Discussion and Conclusion

Since summer 2007, the mentioned HCI instruments have been used in our
project for enhancing the usability of the product. Until now we have learned
few lessons that are summarized here: In our project the XP process fits well
into the UCD approach because of the many overlapping principles (focus on
delivering value, iterative development, end-user incorporation, continuous test-
ing) of both methodologies [6]. The usability engineer is well integrated into the
development team. We found no cultural difference until now. Developers have
gained insights into the UCD practices, while the usability engineer learned the
origin of usability problems [5].

Furthermore it was found out that especially ad hoc input can be given suffi-
ciently via mail, since most of the time no synchronous communication between
the project members is needed. It is also fitting for various response times since
for example, for usability input in the story-writing process it is sufficient to get
results within 3 - 4 days. When quick fixes are needed or other input during
an urgent re-planning, the usability engineer should be easy to contact for a
quick advice via cell-phone or chat. The interaction with usability engineer early
in the story creation-process results in saving time, increasing motivation, and
gaining better realization of needed usability input early in the development.
Furthermore, instead of a big report of a formal usability test, the usability en-
gineer should give report in the form of checkpoints which then be converted
into stories quickly. Usability engineer should be trained in XP-story writing to
be able to deliver the user-stories in a technical-aware manner. Proper customer
and usability engineer coordination is necessary for enabling a good usability
process in the development.

The field trial study is underway these days. We have implemented user-
tracking and feedback mechanisms already in the basic architecture. The inter-
views, diary studies, usability tests, focus group, and log file analysis results

www.manaraa.com

Integration of Extreme Programming and User-Centered Design 179

will provide feedback on not only how the end-users perceive the product but
it will also allow to collect statistical data from their actual usage behavior. In
this way we will be able to provide more insights about the integration of HCI
instruments into our adopted process. We will also gain insights into the context
of mobile multimedia usage. We aim to continuously optimize our process till
the project ends and will share the knowledge gained to the agile as well as the
HCI communities.

References

1. Chamberlain, S., Sharp, H., Maiden, N.: Towards a framework for integrating agile
development and user-centred design. In: Abrahamsson, P., Marchesi, M., Succi,
G. (eds.) XP 2006. LNCS, vol. 4044, pp. 143–153. Springer, Heidelberg (2006)

2. Jokela, T., Abrahamsson, P.: Usability assessment of an extreme programming
project: Close co-operation with the customer does not equal to good usability.
In: Bomarius, F., Iida, H. (eds.) PROFES 2004. LNCS, vol. 3009, pp. 393–407.
Springer, Heidelberg (2004)

3. W3C: Notes on user centered design process (UCD) (2004),
http://www.w3.org/WAI/EO/2003/ucd (Last visited:19.01.2009)

4. Memmel, T., Reiterer, H., Holzinger, A.: Agile methods and visual specification
in software development: A chance to ensure universal access. In: Stephanidis, C.
(ed.) HCI 2007. LNCS, vol. 4554, pp. 453–462. Springer, Heidelberg (2007)

5. Wolkerstorfer, P., Tscheligi, M., Sefelin, R., Milchrahm, H., Hussain, Z., Lechner,
M., Shahzad, S.: Probing an agile usability process. In: CHI 2008: human factors
in computing systems, pp. 2151–2158. ACM, New York (2008)

6. Hussain, Z., Lechner, M., Milchrahm, H., Shahzad, S., Slany, W., Umgeher, M.,
Wolkerstorfer, P.: Agile User-Centered Design Applied to a Mobile Multimedia
Streaming Application. In: USAB 2008. LNCS, vol. 5298, pp. 313–330. Springer,
Heidelberg (2008)

7. Nelson, E.: Extreme programming vs. interaction design. FTP Online (2002)
8. Patton, J.: Hitting the target: adding interaction design to agile software develop-

ment. In: OOPSLA 2002 Practitioners Reports. ACM, Washington (2002)
9. McInerney, P., Maurer, F.: UCD in agile projects: dream team or odd couple?

Interactions 12(6), 19–23 (2005)
10. Ferreira, J., Noble, J., Biddle, R.: Agile development iterations and UI design. In:

Agile 2007, pp. 50–58. IEEE Computer Society, Los Alamitos (2007)
11. Fox, D., Sillito, J., Maurer, F.: Agile methods and User-Centered design: How

these two methodologies are being successfully integrated in industry. In: Agile,
2008. AGILE 2008. Conference, pp. 63–72 (2008)

12. Obendorf, H., Finck, M.: Scenario-based usability engineering techniques in agile
development processes. In: CHI 2008, pp. 2159–2166. ACM, New York (2008)

13. Leitner, M., Wolkerstorfer, P., Sefelin, R., Tscheligi, M.: Mobile multimedia: iden-
tifying user values using the means-end theory. In: Proceedings of the 10th interna-
tional conference on Human computer interaction with mobile devices and services,
pp. 167–175. ACM, Amsterdam (2008)

www.manaraa.com

Optimizing Agile Processes by Early

Identification of Hidden Requirements

Agust́ın Yagüe, Pilar Rodŕıguez, and Juan Garbajosa

Technical University of Madrid (UPM)
SYST Research Group

E.U. Informatica. Ctra. Valencia Km. 7. E-28031 Madrid
agustin.yague@upm.es, prodriguez@syst.eui.upm.es, jgs@eui.upm.es

http://syst.eui.upm.es

Abstract. In recent years, Agile methodologies have increased their
relevance in software development, through the application of different
testing techniques like unit or acceptance testing. Tests play in agile
methodologies a similar role that in waterfall process models: check con-
formance. Nevertheless the scenario is not the same The contribution
of this paper is to explain how the process can be modified to do early
identification of hidden requirements (HR) using testing techniques in
agile methodologies, specifically using failed tests. The result is an opti-
mized agile process where it may be possible to reach the desired level
of functionality in less iterations, but with a similar level of quality. Fur-
thermore it might be necessary to re-think process elements role, e.g.
tests, in the Agile context not assuming waterfall definition and scope.

1 Introduction

1Software industry today is characterized by a continuous dynamism and vari-
ability [1] where time to market is more and more an essential constraint to
be respected. In this environment, agile methodologies have appeared to adapt
industry practices to current market changes. Agile approaches are able to pro-
vide fast responses, because they are based on continuous integration, integrated
testing, incremental delivery, together with teams socially structured to embrace
change. One of the most evident measures of success of agile software devel-
opment is the extent the obtained product meets end-user needs. The artifact
widely used to represent system requirements are User Stories (US). A key aspect
in Agile is a fast communication between customers and developers[2], however
some problems related to requirements remain [3,4].

Waterfall methodologies have a common an exhaustive requirements engineer-
ing process. The soundness of the approach for product development depends on
how complete and consistent the set of identified requirements is at the end of
the requirements analysis [5]. In Agile methodologies, the list of business require-
ments does not need to be complete at the beginning of the project and some of
1 This work has been partially sponsored by OVAL/PM TIN2006-14840 (MEC,Spain)

and FLEXI FIT-340005-2007-37 (ITEA2 6022) (MINER, Spain).

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 180–185, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.manaraa.com

Optimizing Agile Processes by Early Identification of Hidden Requirements 181

them come out during the development and to update the list of requirements.
The use of failed execution tests to identify some hidden customer requirements
was pointed out in [6]. A test failure is not always produced by an error in the
design or coding; it may show the evidence that some assumed requirements had
not been considered for not being visible [7]. There are some publications related
with to requirement interaction such as [8]. The requirement that has not been
considered, and that causes the test failure, will be one that interacts with an-
other already considered. This paper is based on the scenario analysis detection
method presented in [9]. The main goal of this paper is to propose a process that
includes the analysis of failed tests to search for hidden requirements. This result
is an optimized agile process since it may be possible to reach the desired level of
functionality in a lower number of iterations, but with a similar level of quality.
The optimization is based on three factors: time, functionality and resources.
In our approach it is possible to reduce time required to reach a similar level
of functionality, maintaining the resources and with a similar level of quality.
Other alternatives would be also possible.

The remainder of this paper is organized as follows: section 2 describes in
brief the related works identified about agile requirements management and ag-
ile testing techniques. Section 3 analyzes the role of requirements process and
testing tasks in eXtreme Programming and our process improvement approach
is presented. Section 4 describes a case study with a discussion of our approach.
Finally, conclusions and future work are presented in the last section.

2 Background and Related Work

The activities related to customer needs identification and management are some
of the most critical and complex in software engineering in Agile methodologies
[10]. Problems coming up at the stage of identifying customer needs have a
negative impact on the resulting product and could compromise the advantages
that offer Agile methodologies. Ways to improve requirements related practices
were [11] and still are needed. In particular, Boness and Harrison [12] describe
a technique called Goal Sketching that can be used as part of Agile processes
to improve requirements engineering in the way to represent project goals. Also,
Grünbacher et al. [3] present a work focused on XP practices [13] proposing the
inclusion of requirements negotiation techniques such as EasyWinWin to help
stakeholder to discover, elaborate and negotiate software requirements; it does
not pay special attention to the testing. Some other works propose the use of use
cases[14], or scenarios and aspects[15], but they are not focused on the process of
requirements discovery that are assumed implicitly by customer. However, most
of studies are focused on the management of already identified requirements, but
not on providing mechanisms to facilitate the elicitation of needs not identified
at beginning of project (hidden requirements) as is the case in this study. E.g.,
[16] is focused on requirements elicitation when a customer is not available in
situ but not on the customer assumed needs.

www.manaraa.com

182 A. Yagüe, P. Rodŕıguez, and J. Garbajosa

In Agile methodologies, testing is a fundamental practice. Many works such
as [17,18,19,20,21] show this. However, they are not focused on using tests to
identify hidden requirements. This possibility was highlighted in [6]. This paper,
we go a step ahead describing a first step for a systematic way to identify if hidden
requirements are the reason for a failed test in agile methods, and to discover
these requirements. This may result in an improvement of agile processes.

3 Elements in Early Identification of Hidden
Requirements

The starting point of Agile projects is the Product Backlog that represents the
capabilities that should be implemented. Requirements are obtained in an initial
process called Planning game including two main phases: Exploration Phase and
Iteration Planning. The Product Backlog (PB) lets the XP team to establish an
prioritized initial plan and provides the XP team with a project overview. This
phase should be as short as possible. XP considers that requirements might be
changing over the software project execution by many different reasons: customer
perception, environment, technology, or new market opportunities. The next
step is to organize user stories in sprints or iterations. As iterations are executed
during a limited and short period of time, the feedback from each new sprint is
received also after a short period of time. This let the XP team discover very
early if the system is being developed as it was expected by the customer or
not. At the end of each iteration the XP team and the customer review the
development done looking for new functionalities that are added to the PB.

For Test Driven Development [17] the sequence of actions is: first, user sto-
ries description; then for each user story, acceptance tests definition; after that
implementation to satisfy the acceptance tests; finally acceptance tests are run,
if possible by automated testing tools. Underlying the process is continuous in-
tegration environments facilitating the validation of small product increments.
As tests are defined directly from requirements, e.g. user stories, any success
in tests represent that some requirements have been achieved. The main test-
ing techniques applied are: unit testing, focused on source code, and acceptance
testing derived from acceptance criteria. The automation process at this level is
more complex because it requires specific languages to write acceptance tests.
In relation with testing levels [17,22], some development approaches have been
defined; e.g., TDD is addressed by unit testing, ATDD is addressed by accep-
tance tests or STDD that is addressed by User Stories. Each testing technique

Fig. 1. Identified Requirements

www.manaraa.com

Optimizing Agile Processes by Early Identification of Hidden Requirements 183

plays a different role in the identification of hidden requirements. Unit testing is
not very useful to identify hidden requirements. In the opposite side, acceptance
tests, let the development team to discover different hidden requirements such
as: functionality that has not been considered at the beginning of the project,
requirements that were derived from the analysis of other requirements and re-
quirements that were defined with a low detailed level. Finally, integration tests
could be used to identify some hidden derived requirements. The next section
describes a first step to define a systematic approach, to the identification of
hidden requirements and its discovery in Agile methodologies. Figure 1 shows
how each testing technique is related with the types of identified problems.

A first step to define a systematic approach to the identification of hidden
requirements and its discovery in Agile methodologies is based on three main
artifacts involved: testing, sprint review process and product backlog. The iden-
tification sequence is as follows: the development team (or automated testing
tools) executes the test; for each failed test, it is checked if the cause for the fail-
ure is derived from the implementation or not. If implementation is the cause,
e.g. some bugs or misunderstanding of user stories, corrective actions are taken.
Otherwise, this means that something wrong has been done in the specification
of user stories or in the specification of tests, all the issues that were wrong are
analyzed to find out the causes behind. As result, some new user stories, rep-
resenting new or missed functionality are included. The identification of these
hidden requirements could improve the productivity of the development team,
because the time spend re-working some parts of the project in futures iterations
is reduced and more functionality could be done in the same time with higher
levels of quality. Finally, as failed tests let the development team to identify
hidden requirements, it could be interesting to put more efforts at the beginning
of the process on acceptance test, because, as it was explained above, facilitates
the discovery of requirements. It is supposed that in last iterations, there will be
very few hidden requirements and, therefore, more efforts can be done in unit
testing in order to improve the quality of the source code.

Fig. 2. Process Proposed to early identification of hidden requirements

4 Case of Study

As a first step to validate our approach, we have applied the process on an
agile project for a product evolution. The project consisted in the evolution

www.manaraa.com

184 A. Yagüe, P. Rodŕıguez, and J. Garbajosa

of a product called TOPENprimer to a biogas power plant and the name of
the developed product is TOPENbiogas. The project was managed applying
Scrum [23] as project management methodology and several XP practices in the
development such as pair programming and STDD. The product was developed
in 6 months by a 8 members team. More details about the evolution project
are available in [7]. At the end of each sprint, failed tests in search of hidden
requirements were analyzed. Some errors were produced because the expected
behavior was not achieved. In the project, a simulator was used to support
the development and some test failed in the simulator revealed that the real
plant was working in a different way; therefore some biogas plant requirements
were hidden. In other situations, the customer was focused in functional issues.
When some acceptance test of a biogas closing gate were executed, a new hidden
requirement was identified: after each error the system should stop the execution
to prevent inconsistent states.

The analysis of using the process provided a couple of interesting conclusions.
On the one hand, the early identification of hidden requirements could lead the
process of building a solid software architecture from the beginning, decreasing
rework and refactoring stages. On the other hand, it should be considered the
time spent in review meetings. Review meetings were a little longer due to time
devoted to analyze failed test, however, the development team consider that the
time spent in these meetings is not comparable to the time that they should
have spent on corrective action if the hidden needs had been discovered later.
Nevertheless for the review of failed tests could be done by a part of the team.

5 Conclusions and Future Work

This paper has introduced two main issues: tests, failed tests, can be used to iden-
tify hidden requirements in agile processes. Therefore an optimized process can
be implemented considering this feature. The second issue is that it should not
be assumed that the role of process elements, e.g. tests, is the same in waterfall
and agile. Actually, according to [22], tests can be considered as specifications.
It might be necessary to fully rethink the process elements role and scope for
agile. At present a formalization of the process to use failed tests as requirements
enablers in Agile is being performed.

References

1. Boehm, B.: A view of 20th and 21st century software engineering. In: ICSE 2006:
Proceedings of the 28th international conference on Software engineering (2006)

2. Cohn, M.: User Stories Applied: For Agile Software Development. The Addison-
Wesley Signature Series. Addison-Wesley Professional, Reading (2004)

3. Grünbacher, P., Hofer, C.: Complementing xp with requirements negotiation. In:
Proceedings 3rd Int. Conf. Extreme Programming and Agile Processes in Software
Engineering, pp. 105–108. Springer, Heidelberg (2002)

4. Dyba, T., Dingsoyr, T.: Information and Software Technology, no. 9-10 (August
2008)

www.manaraa.com

Optimizing Agile Processes by Early Identification of Hidden Requirements 185

5. Moore, J., Abran, A., Bourque, P., Dupuis, R.: Guide to the Software Engineering
Body of Knowledge 2004 Version. IEEE Press, Los Alamitos (2004)

6. Rodriguez, P., Alarcon, P., Garbajosa, J.: Identification of hidden requirements
from failed system test execution. In: STV 2008 6th Workshop on System Testing
and Validation - In conjunction with ServiceWave (2008)

7. Rodriguez, P., Yague, A., Alarcon, P., Garbajosa, J.: Agile methodologies from the
perspective of the specification of functional and not functional requirements. In:
13th Conference on Software Engineering and Databases (JISBD 2008) (2008)

8. Woit, D.M.: Requirements interaction management in an extreme programming
environment: a case study. In: ICSE 2005: Proceedings of the 27th international
conference on Software engineering, pp. 489–494 (2005)

9. Robinson, W.N., Pawlowski, S.D., Volkov, V.: Requirements interaction manage-
ment. ACM Comput. Surv. 35(2), 132–190 (2003)

10. Zowghi, D., Paryani, S.: Teaching requirements engineering through role playing:
Lessons learnt. In: IEEE International Conference on Requirements Engineering,
p. 233 (2003)

11. Eberlein, A., Leite, J.: Agile requirements definition: A view from requirements
engineering. In: International Workshop on Time-Constrained Requirements Engi-
neering, Essen, Germany (September)

12. Boness, K., Harrison, R.: Goal sketching: Towards agile requirements engineering.
In: International Conference on Software Engineering Advances, 2007. ICSEA 2007,
pp. 71–71 (August 2007)

13. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd
edn. Addison-Wesley Professional, Reading (2004)

14. Gallardo-Valencia, R., Olivera, V., Sim, S.: Are use cases beneficial for develop-
ers using agile requirements? In: Fifth International Workshop on Comparative
Evaluation in Requirements Engineering, 2007. CERE 2007, pp. 11–22 (October
2007)

15. Ribeiro, J.C., Araujo, J.: Asporas: A requirements agile approach based on sce-
narios and aspects. In: Second International Conference on Research Challenges in
Information Science, 2008. RCIS 2008, pp. 313–324 (June 2008)

16. Connolly, D., Keenan, F., Ryder, B.: Tag oriented agile requirements identification.
In: ECBS 2008: Proceedings of the 15th Annual IEEE International Conference and
Workshop on the Engineering of Computer Based Systems (ECBS 2008) (2008)

17. Gupta, A., Jalote, P.: An experimental evaluation of the effectiveness and efficiency
of the test driven development. In: First International Symposium on Empirical
Software Engineering and Measurement, 2007. ESEM 2007 (September 2007)

18. Desai, C., Janzen, D., Savage, K.: A survey of evidence for test-driven development
in academia. SIGCSE Bull. 40(2), 97–101 (2008)

19. Ricca, F., Torchiano, M., Penta, M.D., Ceccato, M., Tonella, P.: Using acceptance
tests as a support for clarifying requirements: A series of experiments. Information
and Software Technology 51(2), 270–283 (2009)

20. Park, S.S., Maurer, F.: The benefits and challenges of executable acceptance test-
ing. In: APOS 2008: Proceedings of the 2008 international workshop on Scrutinizing
agile practices or shoot-out at the agile corral, pp. 19–22 (2008)

21. Ho, C.-W., Johnson, M., Williams, L., Maximilien, E.: On agile performance re-
quirements specification and testing. In: Agile Conference, 2006 (July 2006)

22. Mugridge, R.: Managing agile project requirements with storytest-driven develop-
ment. IEEE Software 25(1), 68–75 (2008)

23. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall
PTR, Upper Saddle River (2001)

www.manaraa.com

Negotiating Contracts for Agile Projects:

A Practical Perspective

Rashina Hoda, James Noble, and Stuart Marshall

School of Engineering and Computer Science,
Victoria University of Wellington,

Wellington, New Zealand
{rashina,kjx,stuart}@ecs.vuw.ac.nz

http://ecs.victoria.ac.nz

Abstract. The Agile Manifesto values “customer collaboration over
contract negotiation”. However, in many real projects, Agile practitioners
spend considerable time and effort negotiating contracts with customers.
We have conducted grounded theory research in India with Agile practi-
tioners. In this paper we present the strategies these practitioners use to
overcome the problems of negotiating contracts. These strategies include
changing the customers’ mindset, providing different options of working,
and — in the worst case scenario — keeping the customers unaware of
internal Agile practices.

Keywords: Contracts, Agile Project Management, Grounded Theory.

1 Introduction

Agile practitioners often face challenges in adhering to their own agile principles.
One such area where this occurs is the area of contract negotiation. During
our qualitative research into the Indian Agile industry, we noted that most of
our participants’ customers demanded fixed bid contracts with fixed time, cost
and scope variables. The practitioners explained that the customers felt this
provided them with a perceived sense of predictability and control over the
project schedule, cost, and deliverables. Since software development firms and
their customers need legal contracts, this left the Agile practitioners to handle
the apparent contradiction between the customers’ desire for “certainty” with
their own commitment to Agile values such as responding to change [1,2].

In this paper we report the results of qualitative research conducted in India.
We identify the key challenges these practitioners face during contract negotia-
tion, and present their proposed solutions to these challenges.

These results are a part of our larger research effort to explore the challenges
and strategies of managing Agile projects using Grounded Theory [3]. In section
2 we will briefly describe grounded theory and present the parameters of our
research and analysis. In section 3 we will present the results of our analysis,
and then in section 4 we will cover related work. We will the conclude the paper
in section 5.

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 186–191, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.manaraa.com

Negotiating Contracts for Agile Projects: A Practical Perspective 187

2 Research Background

2.1 Grounded Theory

Grounded Theory (GT) is a qualitative research method developed by Glaser and
Strauss [3]. GT is considered to be appropriate for research in areas that have not
been studied before [4] and there is little academic research on the challenges of
Agile project management in real world scenarios. The theory developed through
this method does not have be to a universal truth, rather it needs to be a
substantive theory describing processes in social organizations or communities
[4]. GT researchers gather data and then systematically derive a substantive
theory directly from that data, instead of first developing a theory and then
systematically seeking evidence to verify it [4].

The researcher starts out with a general area of interest and gradually nar-
rows their focus as they collect data from real life subjects. As we progress in our
research, data collection, and analysis, we will move closer to developing a sub-
stantive theory. What we report in this paper are the major categories derived
from the analysis of the data collected in India.

2.2 Participants and Procedure

We interviewed eight Agile practitioners from seven different software develop-
ment organizations in India. The participants were using combinations of Scrum
and XP . There were several Agile teams within the organizations. These teams
used several Agile practices such as frequent releases, test driven-development
(TDD), daily stand-ups, pair programming, release/iteration planning, continu-
ous integration etc. The project duration varied from 2 to 4 months and the team
sizes varied from 2 to 20 people on different projects. The products and services
offered by the participants’ organizations include web-based applications, front
and back-office applications, and software development services. The interviewed
participants were Scrum Masters and Agile coaches, except one who was a de-
veloper co-ordinating between the management and the rest of the team. The
8 practitioners included 2 CEOs of small scale firms who were certified Scrum
Masters and had hands-on experience in working with their teams. We will keep
the participants’ identities confidential by refering to them only by number.

We conducted semi-structured, face-to-face interviews using open-ended
questions. The interviews were recorded where permission was granted, and
where the interviews were pre-scheduled. Then we started our coding [3]. GT
coding involves the categorization, interpretation, and analysis of the collected
data. We analyzed the data using the constant comparison method. This method
requires that data from one interview or observation be compared to other pieces
of data gathered from other interviews, observations and sources. Negotiating
contracts for Agile projects emerged as a common category as a result of our
data analysis, and we will now move on to discussing the results of this data
analysis.

www.manaraa.com

188 R. Hoda, J. Noble, and S. Marshall

3 Data Analysis Results

Our participants mentioned contract negotiation as one of the main challenges
they face in managing Agile projects.

“sometimes limitations are imposed by customers, like technology or
contracts...they just want to give you scope, requirements and expect
you to deliver it or they are looking for a fixed price contract....if you
ask me biggest problems...one is contracts...they want three things: fixed
deadline, fixed price, and fixed scope.” - Practitioner P3

Agile practitioners see fixed price contracts as a major limitation that the cus-
tomers impose on them. Other practitioners shared their frustration over the issue
of dealing with fixed time/scope/cost contracts, and their concerns on the impact
that such contracts had on their ability to be agile and their ability to succeed.

“Fixed price doesn’t work well with Agile.” - Practitioner P1

“With Agile it’s difficult to do fixed price projects. Agile takes about
embracing change, can’t do fixed price projects with changes coming
in.” - Practitioner P5

Our participants shared with us some of the strategies they used to deal with
the customers’ expectation of fixed bid contracts.

3.1 Changing Customers’ Mindsets

“All they [customers] have done is fixed price for last 20 years...very
difficult to say it will not be fixed price.” - Practitioner P5

Customers are used to fixed price/scope/time contracts. Our participants dis-
closed that it was difficult for their customers to change their ways of working to
suit Agile projects. In a bid to resolve this issue of rigid mindsets, Agile practi-
tioners often discuss the disadvantages of fixed bid contracts and the advantages
of Agile development methods with customers. The same practitioner P5 shared
the following property of Agile practices as an advantage to customers:

“...focus is on delivering business value as soon as possible - as a result
of that you take items which are most required from point of view of
business, not the ones that are most interesting in terms of technical
implementation.” - Practitioner P5

Participant P8 noted that they often discuss with the customers how many
features are seldom used. They also highlight how Agile allows the customer to
avoid such situations by using prioritization of features, giving them more control
of the product. Agile practitioners make an effort to change the mindset of the
customers by encouraging them to look beyond the constraints of contracts, look
at the bigger picture, and become convinced that Agile offers increased product
control.

www.manaraa.com

Negotiating Contracts for Agile Projects: A Practical Perspective 189

3.2 Providing Options

Agile practitioners offer different contract options to customers in order to en-
courage them to try Agile. Practitioners P3 and P8 encouraged customers to buy
a few iterations to begin with instead of signing a contract for a large project
up front:

“Most of the time... [we] sell a certain number of iterations.” - Practi-
tioner P3

By allowing the customers to use Agile on a trial basis, Agile practitioners are
able to build confidence among customers and provide them with risk coverage.
Once the customers have tried a few iterations, then they are offered the option
to buy more iterations or features as needed:

“One thing we [development firm] used to do and worked very well - we
used to tell the customers you don’t have any risks...in case of Agile we
enter into a contract with the client - OK we’ll show you working software
every fifteen days, you’ll have the option of ending the project within
one sprint’s notice. Maximum they can lose is one sprint. Advantage
we show to client they don’t have to make up their entire mind [they]
can include changes in sprints -they see it as a huge benefit to them.” -
Practitioner P5

“Try for a month - then buy more sprints.” - Practitioner P8

Some Agile practitioners allow the customers to swap features. The project is
delivered at the same time and price as initially specified in the contract, but the
customer can remove product features that they no longer require and replace
them with new ones that are of more value to them.

“...customer after seeing demo after 4th iteration realizes the features
built, say the 13th feature, is not required and he needs something
else...he can swap the two.” - Practitioner P5

The practitioners also provide the customers with a termination clause in the
contract such that customers have the option to quit on a few iterations’ notice.

“...[customers are] open to suggestions to retreat after few sprints.”
Practitioner P2

“[Developers] start working on functionality from day one and you can
add a sprint - not enter into contract for entire project - end in one sprint’s
notice and they [customers] can introduce change” - Practitioner P5

By providing the customers with the option to quit the project in the worst
case scenario, some of their financial risks are covered. So if the customers are
unhappy with the results, they can always quit the project.

www.manaraa.com

190 R. Hoda, J. Noble, and S. Marshall

3.3 The Last Resort

Some customers are still hard to convince so, Agile practitioners are forced to
compromise with fixed bid contracts. In such situations, many Agile practitioners
keep the customer unaware of the Agile practices being followed internally at
the Agile organization.

“the company had taken charge of the projects - we had made it Agile
- internally following Agile, making frequent releases to customers and
asking for feedback. So customer was not aware.” - Practitioner P5

So while it seems like a traditional project to the customers, the develop-
ment firm actually follows Agile internally at the team level. Sometimes Agile
practitioners end up losing business as well.

“...no match between what Agile says and the way they [customers]
wanted. Yes, we lost business.” - Practitioner P5

Ultimately, our participants’ documented experiences confirmed that there are
hard realities in practicing Agile methodologies in the real world. While these
challenges can have serious repercussions on the participants’ businesses (to the
extent of losing a customer entirely), they continue to try to overcome these
challenges with the different strategies discussed above.

4 Related Work

Many well known Agile practitioners and consultants have commented on the
disadvantages of fixed price/scope/time contracts and have suggested their own
solutions. Subramaniam and Hunt [5] suggest Agile practitioners should offer
to build a small portion of the system on a trial basis. After the end of the
iteration, the customer will have the option to continue or cancel the contract.
This is reminiscent of the strategies of providing options discussed in section 4.2
that our participants have employed successfully.

Sutherland [6] introduces the concept of a ‘change for free option’ clause in
standard fixed price contract. It allows customers to change feature priorities for
free so long as the total contract work remains same. It also enables customers
to “add new features if low priority items of equal work are removed from the
contract.” This is similar to the strategies used by our participants which allows
customers to swap features. Franklin [7] discusses how they evolved from time
and materials contracts to fixed price/scope/schedule contracts that supports
Agile development at their organization. They conclude that developing a re-
sponsive contract modification process and building in buffer for schedule and
scope changes are essential for success.

Our data analysis aligns with the work of these earlier practitioners and con-
sultants, and can be viewed as further evidence supporting the argument that
fixed bid contracts and Agile principles are not directly aligned, and that sub-
sequently contract negotiation is a real issue for Agile practitioners.

www.manaraa.com

Negotiating Contracts for Agile Projects: A Practical Perspective 191

5 Conclusion

We have conducted ground theory qualitative research in the India Agile indus-
try. Our research has identifed that Indian Agile practitioners face a critical chal-
lenge in negotiating contracts and overcoming their customers’ initial preference
for fixed contracts. Our data analysis has uncovered some of the strategies em-
ployed by practitioners to overcome or mitigate this challenge. These strategies
include changing mindsets of customers, providing different options of working,
and in the worst case scenario - keeping the customers unaware of internal Agile
practices. The strategies map on to similar ideas proposed by other researchers
and practitioners in section 4, and our findings can be seen as supporting their
arguments.

We plan to conduct follow-up interviews and observations with our practi-
tioners. We will modify our future interview questions to focus on and explore
these emerging categories.

References

1. Abbas, N., Gravell, A.M., Wills, G.B.: Historical Roots of Agile Methods: Where
did Agile Thinking Come From? In: Proceedings of 9th International Conference
on Agile Processes in Software Engineering and Extreme Programming, XP 2008.
LNBIP, vol. 9, pp. 94–103. Springer, Heidelberg (2008)

2. Nerur, S., Mahapatra, R., Mangalaraj, G.: Challenges of migrating to Agile
methodologies. Commun. ACM 48(5), 72–78 (2005), http://doi.acm.org/10.

1145/1060710.1060712

3. Strauss, A., Glaser, B.: The Discovery of Grounded Theory. Adline, Chicago (1967)
4. Adolph, S., Hall, W., Kruchten, P.: A methodological leg to stand on: lessons learned

using grounded theory to study software development. In: Proceedings of the 2008
Conference of the Center For Advanced Studies on Collaborative Research: Meeting
of Minds, pp. 166–178. ACM, Ontario (2008)

5. Subramaniam, V., Hunt, A.: Practices of an Agile Developer. Shroff Publishers,
Mumbai (2006)

6. Sutherland, J.: Agile Contracts: Money for Nothing and Your
Change for Free (2008), http://jeffsutherland.com/scrum/2008/10/

agile-contracts-money-for-nothing-and.html

7. Franklin, T.: Adventures in Agile Contracting: Evolving from Time and Materials
to Fixed Price, Fixed Scope Contracts. In: Agile 2008. IEEE Computer Society,
Toronto (2008)

www.manaraa.com

The Lego Lean Game

Danilo Sato and Francisco Trindade

ThoughtWorks Limited, UK
{DSato,FTrindad}@thoughtworks.com

Abstract. After revolutionizing the automobile industry, Lean princi-
ples have been applied to different knowledge areas, such as software
development. However, many people haven’t been introduced to the con-
cepts that made Lean successful. In this interactive session, the partic-
ipants will work in a small LegoTM production line, experiencing the
problems and applying Lean practices to overcome them. The workshop
will also discuss the similarities and differences between the production
line scenario and the software development industry.

Keywords: Lean Software Development, Kanban, Systems Thinking,
Push System, Pull System, Work Cell.

1 Introduction

Toyota’s approach to manufacturing and management philosophy has revolu-
tionized the automobile industry, giving rise to what was later called Lean by
those studying the success factors behind Toyota’s approach [1]. Lean princi-
ples have been applied to different areas besides its origins in manufacturing,
including: supply chain management, product development, and more recently
software development [2].

Lean concepts are being proposed to solve software development problems, but
most people trying to apply these solutions haven’t had a chance to understand
how these principles were originally applied in the manufacturing industry. In
this 3 hours interactive session, participants will work in a small LegoTM produc-
tion line, experiencing the problems that arise in this scenario and understanding
how Lean practices can be applied to overcome them.

Section 2 describes the expected structure and the workshop mechanics, while
Section 3 discuss the expected outcomes for participants of this workshop.

2 Structure

The target audience of this workshop are practitioners with beginner or inter-
mediate level of knowledge about Lean principles and practices. The number of
participants is limited to 24 (minimum of 8) due to the nature of the exercises.
They will be divided in 4 teams and will work in an imaginary production line
to build LegoTM houses.

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 192–193, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.manaraa.com

The Lego Lean Game 193

Table 1. Workshop Mechanics

Description Duration Elapsed Time

Introduction 0:20 0:20

Iteration 1 – Hands on 0:15 0:35

Debrief/Retrospective 1 (Waste, Push vs. Pull, Kanban) 0:20 0:55

Iteration 2 – Hands on 0:15 1:10

Debrief/Retrospective 2 (Unlevelled Process, Systems Thinking, Work Cells) 0:20 1:30

Break 0:10 1:40

Iteration 3 – Hands on 0:15 1:55

Debrief/Retrospective 3 (Kaizen) 0:15 2:10

Group Activity (Improving the process) 0:10 2:20

Iteration 4 – Hands on 0:15 2:35

Lean In Software Development 0:20 2:55

Conclusion 0:05 3:00

The session mixes hands-on exercises with group discussions and slides to
present the concepts incrementally. Each iteration is designed to demonstrate a
different process to building the houses, as described in Table 1.

3 Expected Outcomes

– Understand Lean concepts in a hands-on experience: The partic-
ipants will be involved in an interactive experience through the different
aspects of Lean.

– Demonstrate that Lean is more than just practices: Approaching
Lean concepts from their origin will allow participants to understand the
core values, which can be further applied to different areas. With this un-
derstanding, attendees will be able to visualize why some Lean ideas can be
very effective in software development, while others can not.

– Have a good understanding of different Lean concepts: Lean concepts
like Waste, Push and Pull Systems, Just in Time, Systems Thinking, Work
Cells, and Kaizen will be covered in the workshop, giving a broad overview
of the main ideas behind the Lean movement.

The slides and the findings from the retrospectives will be published on the
presenters’ websites and will also be available for all conference attendees.

References

1. Liker, J.: The Toyota Way: 14 Management Principles from the World’s Greatest
Manufacturer. McGraw Hill, New York (2004)

2. Poppendieck, M., Poppendieck, T.: Implementing Lean Software Development: From
Concept to Cash. Addison-Wesley Professional, Reading (2006)

www.manaraa.com

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 194–195, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Agile Process Smells and Root Cause Analysis

Dave Nicolette

Abstract. A "smell" is an observable symptom of some underlying problem
that can be perceived either by direct observation of the work flow or team dy-
namics or by examining trends in project metrics. In this workshop, we will ex-
plore common smells in agile processes, some suggested by the facilitator and
some contributed by participants. We will use various root cause analysis tools
and techniques to try and discover the underlying causes of the smells so that
we can identify the appropriate corrective action in each case.

Keywords: Agile, process, methodology, management, root cause analysis.

1 Introduction

One of the fundamental ideas in agile software development is the notion of continu-
ous improvement. Two of the twelve principles expressed in the Agile Manifesto [1]
call attention to the importance of continuous improvement:

• Continuous attention to technical excellence and good design enhances
agility.

• At regular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.

Agile teams often find themselves caught up in the tactical demands of their pro-
jects to such an extent that it is difficult for them to pay continuous attention to excel-
lence or to pause regularly to reflect on their effectiveness. The agile approach is
often chosen for a project precisely because of challenging time-to-market needs or
uncertainty about the detailed requirements for the software to be developed. Under
these conditions, agile teams easily slip into a routine of following practices that may
not be optimal.

Fortunately, there are observable symptoms of common problems that may be no-
ticed by team members, project stakeholders, the project manager, the team coach, or
others who have the opportunity to observe a team in action. Furthermore, simple root
cause analysis techniques are available to help teams discover the underlying causes
of the observable symptoms so that they can determine appropriate corrective action.
This workshop concerns the symptoms to look for and the analysis techniques to use
in following up on the observations.

2 Process Smells

The term process smell comes from the field of software development. It derives from
the term code smell. A code smell is an observable characteristic of source code that

www.manaraa.com

 Agile Process Smells and Root Cause Analysis 195

suggests (to an observer who knows what to look for) that there may be deficiencies
in the design of the code.

The term originated as a metaphor for smells in everyday life. If you noticed an
unusual smell upon arriving home, you would naturally follow up to learn the source
of the smell and determine whether it indicated an urgent problem such as a gas leak,
a minor problem such as spoiled food in the kitchen, or no problem at all, such as the
aroma of your neighbor's cooking wafting through the window.

Similarly, a process smell is a pattern of activity or a trend in metrics that calls for
investigation to determine whether there is an urgent problem, a minor problem, or no
problem at all in the team's work. In the workshop, participants will describe work
patterns or trends in project metrics from their own projects that they perceive to be
process smells. These will provide the inputs to root cause analysis exercises.

3 Root Cause Analysis

Having identified a process smell and recognizing a problem exists, it then falls to the
team to understand the cause of the problem. In the workshop, participants apply a
variety of root cause analysis techniques to the problems they bring from their own
workplaces. These include at least the following:

• Five Whys
• Causal Factor Tree
• Diagram of Effects (Systems Thinking)
• Value Stream Map (Lean Manufacturing)
• Fault Tree Analysis, Ishikawa Diagram, Fishbone Diagram

As appropriate, some of the following techniques may also be applied:

• Failure Mode and Effects Analysis (FMEA)
• Barrier Analysis
• Change Analysis
• Apollo Root Cause Analysis (ARCA), Reality Charting
• Pareto Analysis
• RTR Problem Diagnosis (ITIL)

Reference

1. Agile Manifesto, http://www.agilemanifesto.org

www.manaraa.com

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 196–197, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Agile in Large-Scale Development Workshop:
Coaching, Transitioning and Practicing

Thomas Nilsson and Andreas Larsson

Responsive Development Technologies AB, Teknikringen 10, S-583 30
Linköping, Sweden

{thomas.nilsson,andreas.larsson}@responsive.se

Abstract. Agile in large-scale and complex development presents its own set of
problems, both how to practice, transition and coaching. This workshop aims at
bringing persons interested in this topic together to share tools, techniques and
insights. The workshop will follow the increasingly popular “lightning talk +
open space” format.

1 Overview

Developing large-scale systems is both complex and difficult. Implementing Agile for
large systems, or in large organizations, presents its own set of problems when prac-
ticing, transitioning and coaching. The organizers have worked and coached in both
small and large-scale development for several years and would like to share. Without
a doubt there are many experienced Agile coaches and practitioners who have similar,
or completely different, experiences of working with Agile in large-scale develop-
ment. Do you too, have something to share? Do you want to discuss a specific prob-
lem? Do you want to have a network of peers interested in this topic to exchange
ideas, insights and questions? This workshop invites you to come together, connect
and share.

2 Workshop Format

The workshop will consist of two parts:

• Lightning Talks – 5 minute presentations on a topic by participants
• Open Space – group discussions on proposed and selected topics

2.1 Lightning Talks

Lightning talks are short, intense, talks on a single subject, in this workshop limited to
5 minutes, after which the speaker must stop.

Participants are therefore requested to prepare a lightning talk on a topic relevant to
the theme of the workshop and submit the title to the organizers at least a week before
the workshop. In the workshop the participants will select 6 of the submitted talks that
will be run as a warm-up and introduction to possible Open Space sessions.

www.manaraa.com

 Agile in Large-Scale Development Workshop 197

2.2 Open Space

An Open Space session is a set of group talks on various topics held simultaneously.
Participants can share, listen, and change groups at will. The participants will pro-
pose, prioritize and select topics within the scope of the theme for the workshop.
Hopefully this is an opportunity to talk to, learn from and share with many other ex-
perienced coaches and practitioners that you might have a hard time finding during
the rest of the conference.

Two rounds of Open Space sessions are planned including a short reconvening and
summary from each group after each round.

3 Participants

If you are interested in Agile as applied to multiple teams, multiple products and/or
complex systems of systems development, you are invited to participate. Agile
coaches and practitioners, including developers, project and product leads, and man-
agers, are included.

All participants are requested to prepare a 5 minute Lightning Talk on a relevant
topic. The title of the talk should be sent to thomas.nilsson@responsive.se one week
before the workshop at the latest. Participants are also encouraged to formulate sug-
gestions for relevant Open Space topics. The suggestions need not be presented before
the preparation of the second part on the workshop.

4 About the Organizers

Thomas has been coaching and teaching agile to individuals and organizations, small
and large, for several years. He is the CTO of Responsive AB, a Swedish company
specializing in enabling Agile transitions. Current projects include full time coaching
a development site with around 100 software developers. Thomas has presented and
hosted open space sessions on various conferences, Agile in Sweden 2007, Scrum
Gathering 2007 (London), Agila Sverige 2008 (”Agile Sweden”) and Agile 2008
(Toronto).

Andreas works as Senior Consultant and Agile Coach at Responsive. By actively
taking a role as software developer, project leader, system integrator or scrum master
in projects he has been doing, coaching and teaching agile to individuals and organi-
zations since 2005. Andreas has presented and hosted open space sessions at several
Swedish and international conferences, including XP2006, Scrum Gathering 2007 and
Agila Sverige 2008.

References

1. Gowans, S.: Rules of Open Space,
http://columbussocialmediacafe.org/rules-of-open-space/

2. Wanted: Short Talks,
http://python.org/workshops/1997-10/shorties .html

3. Fowler, M.: Giving Lightning Talks,
http://www.perl.com/pub/a/2004/07/30/lightningtalk.html

www.manaraa.com

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 198–199, 2009.
© Springer-Verlag Berlin Heidelberg 2009

What Does an Agile Coach Do?

Rachel Davies1 and James Pullicino2

1 Agile Experience Limited, United Kingdom
Rachel@agilexp.com

2 British Broadcasting Corporation, United Kingdom
James.Pullicino@bbc.co.uk

Abstract. The surge in Agile adoption has created a demand for project manag-
ers rather than direct their teams. A sign of this trend is the ever-increasing
number of people getting certified as scrum masters and agile leaders. Training
courses that introduce agile practices are easy to find. But making the transition
to coach is not as simple as understanding what agile practices are. Your chal-
lenge as an Agile Coach is to support your team in learning how to wield their
new Agile tools in creating great software.

1 Workshop Summary

Richard Hackman claims in his book "Leading Teams" that there a three basic types
of coaching intervention: Motivational, Consultative, Educational. We want to test out
that theory and explore about what Agile Coaches really do.

The workshop explores typical situations that an agile coach faces. We aim to un-
cover specific coaching interventions that participants have tried. We also want to
hear whether these interventions helped the team improve or not.

1.1 Participation

This workshop is for anyone who is introducing agile practices to teams. It will be
suitable for most conference attendees whether they are managers, consultants, and
educators. We assume participants are already familiar with at least one agile meth-
odology and the most common agile practices.

To find out more about participation, please see our webpage at:
http://www.agilexp.com/XP2009-AgileCoachingWorkshop.php

2 Content and Process

Next participants will share their experience with the group by presenting their posi-
tion papers. The workshop will then move into working in small groups to try an ex-
ercise in coaching agile practices. Following a break for coffee, we will debrief the
exercise and discuss aspects of coaching revealed.

The workshop starts with introductions of both workshop participants and the
topic. We will make a brief slide presentation on the role of an agile coach and
Hackman's model of coaching interventions.

Next participants will move into working in small groups between 3-6 people
around a table. We will distribute scenario cards (and also flipchart paper, sticky

www.manaraa.com

 What Does an Agile Coach Do? 199

notes, and markers) between the groups. Each scenario card describes a typical prob-
lem an agile coach is likely to encounter. Here are a few examples: developers only
make software available to testers on last day of iteration, daily standup meeting takes
a long time, continuous integration tests are not fixed by team if they are failing, one
developer objects to pair programming, managers put pressure on team to commit to
more than their velocity, etc.

Each work groups starts by each person in the group writing down what interven-
tions they would try as an agile coach faced with the scenario on the card. Each inter-
vention is written on a separate sticky note and the notes from that group collected
together. The work group then discusses the pros and cons of the different interven-
tions. When each scenario has been discussed, it is passed to the next group (with the
sticky notes written by the previous group). This is repeated so each group has
worked on three or four scenarios.

The next step is to bring together the coaching interventions from all the groups into
the following categories Motivational, Consultative, Educational, and Other. This
should produce a flipchart sheet per category covered with interventions on sticky notes.

This opens into a discussion with the whole group on aspects of agile coaching re-
vealed by the group work.

Now we start to distil the ideas into a mind map of what agile coaches do. Each
work group will take a turn to present their mind map to the session group.

2.1 Timetable

The presenters will arrange to take digital photographs of all workshop outputs and
arrange for these to be uploaded to the workshop web page or conference wiki website.

00:00 - 00:10 Introductions
00:10 - 00:30 Slide presentation
00:30 - 00:35 Get into groups
00:35 - 01:15 Scenarios/Interventions
01:15 - 01:30 Clustering
01:30 - 01:45 Break
01:45 - 02:15 Discussion
02:15 - 02:45 Mind maps
02:45 - 03:00 Review results

3 Workshop Organizers

Rachel Davies is a highly respected Agile Coach whose expertise is recognized inter-
nationally across the XP, Scrum and DSDM communities. She has 20 years experience
in software development and started her own agile journey in 2000 as a programmer in
an XP team. Rachel has served on the board of directors of Agile Alliance for 6 years.
Rachel has presented at numerous conferences on topics related to agile coaching and
has participated in the XP 200x conference program every year since 2001. She has
also written a book on Agile Coaching which is to be published this summer.

James Pullicino works as a program manager at BBC. He has experience coaching
agile teams and project managers within BBC. He has a special interest in Risk Man-
agement on Agile projects.

www.manaraa.com

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 200–201, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Workshop - Mechanics of Good - Creating Well
Functioning Distributed Teams

Lars Arne Skår1 and Jan-Erik Sandberg2

1 Miles
2 Det Norske Veritas

Abstract. What do those who succeed in having well functioning teams do
differently from those who don’t? After running workshops on different
international conferences based on this subject it is clear that getting distributed
projects right is still a challenge. Driven by the off-shoring trend, we see lot of
great opportunities for improvement on team collaboration. The necessary
compromises may have a significant influence of the outcome. The purpose of
the workshop is to further explore what challenges exists and share experiences
on what works and what doesn’t; and why that is.

Keywords: culture, distributed teams, offshoring, organization, psychology,
workshop, creativity.

1 Introduction

The content of the workshop will be based on the participants’ contributions as well
as the organizers. Furthermore, the outcome of a similar workshop conducted at
Agile2008 in Toronto will be used as a basis for the workshop.

The organizers have been working in large software development companies who
have been working with off shored developers in India, China and the Czech
Republic, which has provided exposure and experience into what challenges exists.
Probably the same kinds of mistakes have been done that almost everybody else has
made until ways that works better was established.

The workshop will start with this initial list of potential topics to explore:

• The state of collaborative tools (last year it was still the simpler the better - the
latest versions of the current tools still don’t alleviate the distance problem for
instance)

• Continuous build / integration across geographies site - how to manage, how
to cope

• Onshore vs. offshore - how to divide work and coordinate (some best practices
are emerging)

• Communication channels (why conference calls do not work - or how to make
them work)

• How to justify the cost of travel - the need to meet face to face (might be
challenging in these times - but was clearly an important finding last year)

www.manaraa.com

 Workshop - Mechanics of Good - Creating Well Functioning Distributed Teams 201

• How to cope with cultural diversity, creating an atmosphere of mutual respect
• Buying into common practices across locations
• How to really know each other; how to bond across locations
• Experiences using a “proxy” to manage our offshore resources?
• First generation, second generation, third generation experiences in off shoring

- how does it usually evolve/mature?

The topics coming from the participants will be prioritized, as those will be of the
highest relevance.

We will be using a technique called “Goldtaking” to facilitate the workshop – see
description in next chapter.

The group starts off by having a quick standup where everyone suggest one topic
to discuss. These topics are being listed on a board/big notebook.

Everyone goes up to the board and make a single mark on one or two topics they
like to discuss.

Depending on how many people are attending, the organizers choose a number of
topics to discuss and make up groups for them based on number of markings. Since
everyone can mark two topics, we easily filter the topics. If they could only select
one, they are more likely to only mark the one they came up with in the beginning.

2 “Goldtaking” – New Workshop Technique

For each group we have a notepad and a pen and select a note taker to begin with.
Whenever that note taker wants to make a statement or ask a question, she passes
the notepad and pen clockwise, thus making the person sitting next to her the new
note taker.

This has some interesting effects; one that we experience is that very often
someone is likely to “take over” the discussion. After some time they are bound to
become the new note taker, thus giving the word to the others.

Another thing that this accomplishes is that when we gather the books afterwards,
we have an excellent document for making reports or post-documents of the
discussion.

Everyone is free to take their own notes when they are not the official note taker,
this means that if they really want to take notes on everything; they can either fill in
their notes whenever they pass the notepad (after making the statement/question) or
they can borrow the notebook afterwards and copy from it (the missing bits will be
written by them self!).

The reason for the name “GoldTaking” is that this is inspired from Gold Fish
Bowl-discussions and that the result document may be worth its weight in gold.

www.manaraa.com

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 202–203, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Test-Driven User Interfaces

Charlie Poole

NUnit Software, Poulsbo, WA, U.S.A.
charlie@nunit.com

Abstract. User interfaces have a reputation for being difficult to develop using
TDD – and even to test in an isolated fashion. A number of techniques have
demonstrated promise, but as new technologies arise, they often need to be re-
invented or at least refurbished in order to remain useful. There is a strong need
for common, cross-platform practices for isolated GUI testing and Test-Driven
Development of GUIs.This workshop invites individuals with useful points of
view, techniques and tools to present and discuss their ideas with other re-
searchers and workers in the same field. Each participant is expected to prepare
a brief presentation and to participate in active discussion of their own work and
that of others.

1 Audience, Benefits and Outcomes

The workshop is primarily aimed at programmers with advanced TDD experience in
one or more platforms, including GUI development and testing background, and at
researchers in the same areas.

Participants will be able to share ideas with other individuals working in this rather
sparsely documented area, hone those ideas and begin work toward a common stan-
dard of practice.

In addition to the individual benefits to the participants, this workshop will produce
a number of recommendations for team and individual practices. Recommendations
will be published on a web site or wiki – the specific location to be determined.

The workshop should – if successful – form a starting point for a long-lasting com-
munity effort to document practices of GUI testing and Test-Driven Development and
to incorporate those insights in one or more open source tools.

2 Workshop Organization

The workshop is basically a micro-conference on GUI testing and TDD. It will be
conducted in four phases.

1. In the initial phase, the facilitator will briefly summarize prior work in the
problem space and ask the participants to set an agenda.

2. The second phase will consist of presentations by the workshop participants,
each covering a specific approach, tool or technique for GUI testing or TDD.
The presentations, having been submitted beforehand, will be grouped

www.manaraa.com

 Test-Driven User Interfaces 203

according to general topics covered. Participants are expected to provide prac-
tical demonstrations of their ideas, illustrated by actual examples of tests or
test methodologies.Presentations are time-boxed, as are the question and dis-
cussion periods following each presentation.

3. In the third phase, participants will be divided into separate small groups. Each
group will be tasked to prepare a short declaration of lessons learned around a
specific issue of GUI testing or TDD.

4. The final phase consists of the “lessons learned” presentations from each of the
breakout groups.

3 Organizer

Charlie Poole has spent more than 30 years as a software developer, designer, project
manager, trainer and coach. He is one of the authors of the NUnit testing framework
for .NET and participates in a number of other agile tool projects.

Charlie has focused on GUI development on a number of platforms and languages.
He provides training in GUI testing and TDD in the Windows environment, particu-
larly under the .NET framework.

4 Prior Presentations

A tutorial on this topic was presented at XP2005 and various versions have also been
presented commercially. This workshop is new in its present form and is intended to
break new ground and identify new techniques for GUI testing and TDD.

www.manaraa.com

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 204–205, 2009.
© Springer-Verlag Berlin Heidelberg 2009

The New New NEW! Product Development Game

Marc Evers1 and Willem van den Ende2

1 Piecemeal Growth, Delftseschans 18, 3432 TD Nieuwegein, The Netherlands
marc@qwan.it

2 Living Software BV, Spilmanstraat 25, 5645 JE Eindhoven, The Netherlands
willem@qwan.it

Abstract. In this experiential workshop, we will explore the agile product de-
velopment space (managing, planning, prioritizing, learning and scheduling)
through simulating the different approaches, reflecting on our experiences, and
summarizing what this means for our daily work.

Keywords: product development, agile planning, story mapping, dimensional
planning, product backlogs.

1 Summary

There is more than one agile way to plan a project. Recently, a number of new prod-
uct development methods such as Kanban, Dimensional Planning and User Story
Mapping have sprung up to address shortcomings of 'traditional' agile planning meth-
ods in some contexts. Existing methods such as planning with ranges that are not yet
mainstream are gaining tool support.

In this experiential workshop, we will explore the agile product development space
(managing, planning, prioritizing, learning and scheduling) through simulating the
different approaches, reflecting on our experiences, and summarizing what this means
for our daily work.

2 Audience

Product owners, product managers, Scrum masters, project managers business ana-
lysts, researchers interested in product management, planning, and scheduling.

3 Process and Timetable

We will run short simulations using the different product management and planning
approaches. We hand out printed stories for an example system to be used for plan-
ning. If the group is large, we will run two parallel simulations, otherwise we do it
with one group. The groups get 45 minutes to plan the project using either:

− One of the existing variations of 'traditional' planning a la Scrum, XP or DSDM
where stories are laid out in a linear fashion divided by iterations/sprints/timeboxes;

− One of the methods mentioned in the abstract;
− A method brought in by participants.

www.manaraa.com

 The New New NEW! Product Development Game 205

Time Activity
30 min introduction - short presentation of workshop goals and process;

overview of different approaches
45 min first simulation run
15 min debrief, reflection
45 min second simulation run
15 min debrief
30 min discussion - how to apply experiences in the real world

4 Presenters

Willem van den Ende is a Dutch eXtreme Programming pioneer. Since 1999 he
guides organisations in being more effective, often through the introduction of Agile
Software development as an all-hands person: coach, developer and facilitator. Al-
ways active in the local and international community, he serves as host of sys-
temsthinking.net and the European Agile Open conferences and previously on the
Agile Alliance board and co-founder of xp days benelux. Willem is an appreciated
workshop facilitator at practitioners' conferences like XP(Day), Software Practice
Advancement and Agile200*.

Marc Evers Evers works as an independent coach, trainer and consultant in the
field of (agile) software development and softwareprocesses. Marc develops true
learning organizations that focuson continuous reflection and improvement: apply,
inspect, adapt. Marc also organizes workshops and conferences on agile and lean
software development, extreme programming, systems thinking, theory of constraints,
and effective communication. Marc is co-founder of the Agile Open and XP Days
Benelux conferences, and founder and board member of AgileHolland.

Marc and Willem are partners in QWAN (Quality Without A Name – www.qwan.it),
an initiative of pragmatic practitioners, who have joined forces to deliver courses and
mentoring on effective software development.

www.manaraa.com

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 206 – 208, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Positioning Agility

Nilay Oza1, Pekka Abrahamsson2, and Kieran Conboy3

1 VTT Technical Research Centre of Finland
nilay.oza@vtt.fi

2 University of Helsinki, Finland
pekka.abrahamsson@cs.helsinki.fi

3 National University of Ireland, Galway, Ireland
kieran.conboy@nuigalway.ie

Abstract. Agile methods are increasingly adopted by European companies.
Academics too are conducting numerous studies on different tenets of agile
methods. Companies often feel proud in marketing themselves as ‘agile’. How-
ever, the true notion of ‘being agile’ seems to have been overlooked due to lack
of positioning of oneself for agility. This raises a call for more research and in-
teractions between academia and the industry. The proposed workshop refers to
this call. It will be highly relevant to participants, interested in positioning their
company’s agility from organizational, group or project perspectives. The posi-
tioning of agility will help companies to better align their agile practices with
stakeholder values. Results of the workshop will be shared across participants
and they will also have opportunity to continue their work on agile positioning
in their companies. At broader level, the work done in this workshop will con-
tribute towards developing Agile Positioning System.

Keywords: Agility, Agile Software Development, Business Agility.

1 Description

The initiative of Agile positioning system stemmed from the FLEXI project – a pan-
European ITEA project on Flexible Software Development techniques. More informa-
tion about FLEXI is available at http://www.flexi-itea2.org As part of FLEXI project,
we are working towards an Agile Positioning System (APS), a meta-framework that
helps companies to better strategize agility from different angles and better address
stakeholder values. APS is being developed with active cooperation from the FLEXI’s
industry and academic partners. An example of how an APS instance may look like is
presented in Figure 1.

1.1 Expected Outcomes

Expected outcomes: The proposed workshop will generate instances of APS in differ-
ent axes (shown in figure 1) and sub-instances of a particular axis. In particular, the
workshop aims to gain diverse use of agile profiling from the participants as well as to
use the stakeholder values as the key driver in identifying them.

www.manaraa.com

 Positioning Agility 207

Fig. 1. APS instance

2 Workshop Outline

The workshop outline is as follows:

1. Introduction (10 minutes - personal introduction, participant expectations, work-
shop goals)

2. APS initiative and workshop flow (15 minutes)
3. Discussion on Higher level APS axis (10minutes)
4. Group work (30 minutes - each group with 3-5 participants, will work on one of

the APS axis. Higher level APS axis will be proposed by organizers)
5. Break (10 minutes)
6. Group work continues (40 minutes)
7. Presenting the group work results (30 minutes)
8. Break (10 minutes)
9. Discussion on exploitation of results and next steps for APS (20 minutes)

10. Workshop feedback and closure (5 minutes)

The workshop will have participants working on APS. Interactions among break-out
groups will be important to develop different instances of APS. Organizers will assist
in maintaining workshop flow. The audience size should be between 25 and 35 with
3-5 participants in each break-out group. The main task for each group (for point 4
and 6 in above outline) will be:

1. Select one of the axes from APS
2. Discuss the axis in the group and develop an instance of APS for the chosen axis

(similar to Figure 1). The group can develop sub-instances at-least upto two
levels. More instructions will follow during the workshop.

3. Feed the axis data to a tool (will be provided in the workshop) to form a map
similar to Figure 1. The tool for implementing APS data is under development in
FLEXI project.

4. Develop acceptance criteria for the developed APS instance.

www.manaraa.com

208 N. Oza, P. Abrahamsson, and K. Conboy

2.1 Benefits of Participation

Benefits of participation: The proposed workshop aims to develop other instances of
APS with the participants. The industry participants will have opportunity to experi-
ment APS in their own organizations and also be part of APS development. The
academic participants will have opportunity to enrich theoretical angle of APS and
identify new avenues of empirical studies.

3 About the Session Organizers

Nilay Oza is a senior research scientist at VTT, Technical Research Centre of Finland.
He conducts research, develops and manages projects and offers advice to companies
as a member of VTT. Nilay is VTT’s leader in FLEXI project and recently he has
been researching in the area of agile-innovation alignment, agile adoption, agile trans-
formation, stakeholder values, distributed development, greenICT and lean manufac-
turing. Nilay can be reached at nilay.oza(at)vtt.fi

Pekka Abrahamsson is professor of computer science in the University of Helsinki
in Finland. He is the project leader of the pan-European agile research initiatives and
pursues to increase the agile capabilities in European companies and abroad. Pekka
can be reached at pekka.abrahamsson(at)cs.helsinki.fi

Kieran Conboy is a lecturer in Information Systems at NUI Galway, Ireland. His re-
search focuses on agile systems development approaches as well as agility across other
disciplines. Kieran is currently involved in numerous national and international pro-
jects in this area, and has worked with many companies on their agile initiatives in-
cluding Intel, Microsoft, Accenture, HP, and Fidelity Investments. Kieran has chaired
related conferences including the European Conference in Information Systems (Gal-
way 2008) the XP and Agile Development Conference (Limerick 2008) and also has
chairing roles at XP2009 and XP2010. Some of his research has been published in
various leading journals and conferences. Prior to joining NUI Galway, Kieran was a
management consultant with Accenture, where he worked on a variety of projects
across Europe and the US. Kieran can be reached at kieran.conboy(at)nuigalway.ie.

www.manaraa.com

Scrum Board Game

Stefan van den Oord1 and Wim van de Goor2

1 SES – MiPlaza, Philips Research, Eindhoven, NL
stefan.van.den.oord@philips.com

2 SES – MiPlaza, Philips Research, Eindhoven, NL
wim.van.de.goor@philips.com

Abstract. The Scrum Board Game is a workshop for beginners. It is
for people with any role (customer, developer, tester, etc.), who don’t
exactly know what a Scrum Board is, or how to create one themselves.
The workshop teaches the benefits of a Scrum Board, how to use it, and
how to introduce it in projects.

Keywords: scrum board, game, workshop, pasta, communication,
visibility, fun.

1 Workshop Overview

You are a team member on a pasta construction project. We will be your cus-
tomer and we want to know how you’re doing, if you will make the deadline,
if you can take on extra work, etc. In this session, you experience how a scrum
board can help answer these questions.

Using spaghetti, macaroni, and other pasta, you will construct furniture. We
will help you discover how a Scrum Board can give your team and the customer
insight in what’s happening. You will learn that a Scrum Board gives visibility,
clarity, improves quality, and is fun to use!

2 Workshop Goals

A typical project is not a straightforward exercise of performing tasks. As a
customer, you may wonder what the developers are doing and how far they are.
The development team may feel that the customer is micro-managing them, or
is changing his mind every time they talk to him. They ask themselves how they
can get the customer to understand the effect that has on productivity. Team
members may have trouble answering simple questions like: “Can you make it
this iteration?”.

In order to answer these questions, you need a way to make the current situa-
tion visible. A Scrum Board is a very effective tool to make status and problems
visible. This workshop is centered on learning how to create and manage a Scrum
Board. Also, by actually using a Scrum Board during the workshop, teams learn
to interpret their Scrum Boards. Not only that, but also how to come up with
ways to make the desired information visible.

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 209–210, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.manaraa.com

210 S. van den Oord and W. van de Goor

The goal of the workshop is for various stakeholders to learn the basics of using
and interpreting a Scrum Board. Afterwards, you should be able to introduce a
Scrum Board in your own project, and tailor it to your specific needs.

Last but not least: using a Scrum Board is fun, as demonstrated during the
workshop.

3 Intended Audience

Participants should have no real experience with a Scrum Board. They may have
heard about it, but they have no idea how to start using one in their project. It
doesnt matter whether they are developers, testers, customers, project managers,
etc. A mix of these roles is ideal, because that allows everybody to gain insight
in the different ways to look at a Scrum Board.

4 Workshop Organizers

Stefan van den Oord became interested in XP in 2003. He introduced a num-
ber of XP practices in his company. In 2007, he joined SES (Philips MiPlaza),
an organization with more than 8 years of experience with XP and Scrum. At
Camp Scrum he learned the value of a Scrum Board. He now considers it an
essential part of software development. His runs his own projects in an Agile
manner, and coaches other teams.

Wim van de Goor is an Agile Software Team Leader at SES (Philips MiPlaza).
He has more than 7 years of experience with XP and Scrum. He is eager to
discover and try new practices. The Scrum Board was a successful practice that
he started using in a complex project. Wim is also an Agile mentor and is
involved in relentless improvement of the SES organization.

www.manaraa.com

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 211–212, 2009.
© Springer-Verlag Berlin Heidelberg 2009

XP2009 Workshop: Climbing the Dreyfus Ladder of
Agile Practices

Patrick Kua

Thoughworks
168-173 High Holborn,London
WC1V 7AA, United Kingdom
pkua@thoughtworks.com

Abstract. Adopting agile isn't as simple as ticking practices off a known list
and moving onto the next one. It takes some effort to simply start applying a
practice, and even more effort to attain a certain level of mastery. Distinguish-
ing between apprentice-like behaviours and master-like behaviours is an impor-
tant element of pushing the boundaries of a practice even more. This workshop
uses the Dreyfus Model of Skill Acquisition to map behaviours we see in agile
practices to the model and learn how to use this model to as a tool to help peo-
ple progress to further levels of mastery within a particular practice.

Keywords: learning, Dreyfus Model, change, influence, organisational change,
agile patterns.

1 Synopsis

Many learning models acknowledge people don't simply master a particular skill as
soon as they start practicing with it, that the world is separated into those who have
learned a skill, and those who are yet to learn it. These learning models acknowledge
that there is often a scale between starting to use a practice, and using a practice
effectively and to a point where they effectively apply a practice without any
conscience effort.

Understanding how people learn is important for agile teams, both those starting to
adopt practices, and those who are already applying them. For this ninety minute
workshop, we will map behaviours we see of agile practices to the Dreyfus Model of
Skill Acquisition1 and spend some time understanding how to use it as an evaluation
and coaching tool.

Specifically we will:

• Introduce how people learn and briefly mention a number of other learning
models.

• Introduce the Dreyfus Model of Skill Acquisition
• Brainstorm behaviours that we see related to a finite set of agile practices

1 Stuart E. Dreyfus; Hubert L. Dreyfus (Feb 1980), A Five-Stage Model of the Mental Activi-

ties Involved in Directed Skill Acquisition.

www.manaraa.com

212 P. Kua

• Classify those behaviours according to the levels defined by the Dreyfus
Model

• Discuss how people might apply this map and model to their own situations
• Discuss how to keep the model up to date and relevant

2 Who Should Attend?

This workshop is aimed at anyone interested in how people learn, particularly about
how people learn mastery of specific agile practices.

Whilst it will prove an invaluable tool for agile coaches, it should be useful for
anyone currently applying agile practices or thinking about picking up agile practices
in their own organisation. People should come away from their workshop able to
recognise their "current state" and their desired "future state" with a clear and explicit
model to share with others in their quest for mastery over several agile practices.

Ideal participants should have had some exposure to working with at least one ag-
ile team in order to relate to some of the behaviours and how to map them into the
model.

3 Presenter's Background

Patrick Kua is an agile coach, facilitator and developer for ThoughtWorks. He has
been working with individuals on teams in agile environments for the last five years,
and understands how powerful and responsive people can be when working together
in a common manner. He is always interested in aspects of continuous improvement,
and how light weight processes can boost team effectiveness.

He brings a blend of deep technical skills and deep understanding of processes that
help his teams succeed in their goals. He's presented at the last three XP200x about
Test Driven Development, Information Radiators and Introducing Change into Or-
ganisations.

4 Workshop History

This workshop is based on a set of activities we've run for clients in the past, and
thought it'd be useful as a way of sharing a wider variety of experiences in the agile
community.

This will be the first time this specific workshop will be run at a conference.
The material in this workshop will be useful for anyone responsible for coaching

teams in agile practices as a model for evaluating where people are in their mastery,
and where they can go.

www.manaraa.com

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 213–214, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Software “Best” Practices: Agile Deconstructed

Steven Fraser

Director – Cisco Research Center, USA
sdfraser@acm.org

Abstract: This workshop will explore the intersection of agility and software
development in a world of legacy code-bases and large teams. Organizations
with hundreds of developers and code-bases exceeding a million or tens of mil-
lions of lines of code are seeking new ways to expedite development while
retaining and attracting staff who desire to apply “agile” methods. This is a situa-
tion where specific agile practices may be embraced outside of their usual zone
of applicability. Here is where practitioners must understand both what “best
practices” already exist in the organization – and how they might be improved or
modified by applying “agile” approaches.

1 Workshop Theme

What is “best” depends on context – and this workshop will explore software
“best” practices in a hybrid world where the existing strategies for development invite
agile to move beyond small co-located teams. Initial topics for discussion dependant
on participant interests and experiences will include:

• What constitutes software “best practices” and their related limitations and
failure modes – specifically in the context of large systems and teams.

• What constitutes team collaboration “best practices” and how they might be
optimized in light of continuous change.

Where influences driving change might include:

• Acquisitions – integration of a team and its existing code base (often devel-
oped using agile methods, e.g. scrum and XP).

• New grads – integrating individuals who are generally more open to new
practices and who don’t fully understand the existing legacy code base.

• Increasing complexity – caused by aging software which is required to sup-
port continuous feature growth.

• The need for software archeology as teams are progressively restructured
(continuous change in membership) and documentation loses its value.

2 Workshop Methodology and Anticipated Attendee Profile

The workshop will consist of a series of phases that foster a cycle of divergence and
convergence to achieve shared understanding and foster networking and awareness by

www.manaraa.com

214 S. Fraser

the participants. The brainstorming and working sessions will be facilitated using a
variety of team techniques including Nominal Group Technique (NGT), Categoriza-
tion, and Wideband Delphi facilitation methods. The proposed agenda is:

• First Part: Introductions and overview of best-practices.
• Second Part: Brainstorming and prioritizing ideas.
• Third Part: Structuring, summarizing and reporting of ideas.

The workshop is anticipated to attract managers, practitioners, consultants and
academics who are interested with system development in an environment featuring
large teams and legacy code bases – where the organization wishes to adapt agile
methods to some, but perhaps not all, development practices.

3 Workshop Convener and Facilitator

STEVEN FRASER is the Director of the Cisco Research Center in San Jose California
with responsibilities for developing and managing university research collaborations.
Previously, Steven was a member of Qualcomm's Learning Center in San Diego,
California with responsibilities for technical learning and development. Steven held a
variety of technology management roles at BNR/Nortel including Process Architect,
Senior Manager (Global External Research), and Design Process Advisor. In 1994, he
was a Visiting Scientist at the Software Engineering Institute (SEI) at Carnegie
Mellon University (CMU) collaborating on the development of team-based domain
analysis (software reuse) techniques. Fraser was the XP2006 General Chair, the
Corporate Support Chair for OOPSLA'07 and OOPSLA’08, and Tutorial Chair for
both XP2008 and ICSE 2009. Fraser holds a doctorate in EE from McGill University
in Montréal - and is a member of the ACM and a senior member of the IEEE. Fraser
is a trained (BNR/SEI) and experienced facilitator.

www.manaraa.com

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 215–216, 2009.
© Springer-Verlag Berlin Heidelberg 2009

XP Workshop on Agile Product Line Engineering

Yaser Ghanam1, Kendra Cooper2, Pekka Abrahamsson3, and Frank Maurer1

1 Department of Computer Science, University of Calgary
{yghanam,fmaurer}@ucalgary.ca

2 Department of Computer Science, University of Texas at Dallas
kcooper@utdallas.edu

3 University of Helsinki, Finland
pekka.abrahamsson@vtt.fi

Abstract. Software Product Line Engineering (SPLE) promises to lower the
costs of developing individual applications as they heavily reuse existing arti-
facts. Besides decreasing costs, software reuse achieves faster development and
higher quality. Traditionally, SPLE favors big design upfront and employs tra-
ditional, heavy weight processes. On the other hand, agile methods have been
proposed to rapidly develop high quality software by focusing on producing
working code while reducing upfront analysis and design. Combining both
paradigms, although is challenging, can yield significant improvements.

Keywords: agile product line engineering.

1 Introduction

Background. Software Product Lines (SPLs) are sets of similar, yet not identical,
systems developed by an organization based on a set of core assets [1]. SPLs have
proved to be effective in lowering the cost of software development, reducing time-to-
market, and enhancing product quality. Traditionally, SPLE favors big upfront design
and employs traditional, heavy weight software engineering processes. A domain
architecture is usually required before individual applications are engineered. On the
other hand, agile development methods such as Extreme Programming (XP) have
been proposed to rapidly develop high quality software by focusing on developing
working code while reducing upfront design and process overhead. Also, anecdotal
evidence shows that Scrum is keenly adopted by large software companies basing
their product development on SPLs. Scrum bases itself on cross-functional, self-
organizing teams working in tightly time-boxed development settings. It is interesting
to note that although the goals of the two software paradigms have similarities (time-
boxed, high quality, complex software), the solutions to realize the goals seem to
conflict and little work is available in the literature to integrate them. Integrating agile
software development and SPLE is indeed challenging, but has the potential to mag-
nify enhancements in quality, cuts in cost and reductions in time-to-market.

Goal and Scope. The goal of this workshop is to bring together people who are using
or want to use agile approaches in the development of SPLs. We plan to discuss the

www.manaraa.com

216 Y. Ghanam et al.

similar goals but different philosophies of agile and product line development tech-
niques, and try to explore to what degree they can (or should) be integrated, and how
this integration can happen. Beside topics that will be proposed by the audience, we
will try to address the following points: the needs of stakeholders (current and future),
documentation, processes and activities to target for agility (domain engineering,
application engineering, variability management), organizational software reuse,
technology driven vs. customer driven projects, tool support, development culture &
roles (architects, developers, testers).

2 Participation

Participants who wish to present in the workshop, are expected to submit a 2- to 4- page
contribution under one of the categories below. The submission should be original. It
should not have been accepted at or submitted to another venue (journal, conference,
workshop, symposium). Submissions should be 2 to 4 pages in length.

Research papers: Original research on combining agile methods and SPLE. This can
be either finished work or research in progress with preliminary results.

Experience reports: Stories of successful or unsuccessful attempts to integrate agile
methods and SPLE. This is a great chance for people from industry to contribute their
experiences and learned lessons.

Position papers: Thoughts and views about combining the two practices, supported
by preliminary theoretical or practical work on the topic. This can also include the
author’s insight on current and future trends, or suggestions of best practices empow-
ered by previous experiences.

3 Organization

Style. The workshop will be a half-day workshop. Participants whose work is ac-
cepted for presentation will be allocated time to present their submission, and engage
in a Q&A session. Afterwards, a roundtable or “fishbowl” discussion on topics of
interest to the audience will take place. The discussion will allow participants to en-
gage in the workshop and ensure their questions are addressed. A summary of the
discussions will be posted on a wiki page after the conference. Moreover, selected
contributions will be included in a special issue journal.

Organizers. The co-chairs for this workshop are: Yaser Ghanam, University of Cal-
gary, Canada; Kendra Cooper, University of Texas at Dallas, U.S.A; Pekka Abra-
hamsson, University of Helsinki, Finland; Frank Maurer, University of Calgary,
Canada.

Reference

1. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-
Wesley, Reading (2002)

www.manaraa.com

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 217–218, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Test Driven Development: Performing Art

Emily Bache

IBS JavaSolutions, Mölndalsvägen 77, SE-400 22 Göteborg, Sweden
emily.bache@ibs.se

Abstract. The art of Test Driven Development (TDD) is a skill that needs to
be learnt, and which needs time and practice to master. In this workshop a se-
lect number of conference participants with considerable skill and experience
are invited to perform code katas [1]. The aim is for them to demonstrate ex-
cellence and the use of Test Driven Development, and result in some high
quality code. This would be for the benefit of the many programmers attend-
ing the conference, who could come along and witness high quality code
being written using TDD, and get a chance to ask questions and provide
feedback.

Keywords: Test Driven Development, Coding Dojo, Code Kata.

1 Background

The idea of code kata was introduced by Dave Thomas in his blog [1], and further
developed by Laurent Bossavit and Emmanuel Gaillot [2]. One of the things Laurent
and Emmanuel suggested was that after practice, you could become so expert at doing
a kata that you could perform it for your peers at your coding dojo as an example of
your best solution to the problem. The solution should be best not only in the sense
that the resulting code is of high quality and well tested, but that you create it using a
strict TDD approach, and can explain your design decisions to the group as you are
writing it. In this way the whole group benefits from the experience of the individuals
performing, and the individuals benefit from peer feedback.

2 Workshop Mechanics

The half day session will comprise of perhaps 6 kata performances. The performers
will be chosen in advance, and perform in pairs. The remaining workshop participants
will be there to learn from and critique the kata performances. The workshop modera-
tor will introduce, moderate discussions during, and invite feedback after each
performance.

Each performance will last 10-30 minutes, and be followed by 10 minutes of feed-
back/discussion, during which the next performers will set up their laptop with the
projector.

www.manaraa.com

218 E. Bache

3 Performer Selection

A public call for participation will be presented on codingdojo.org [3]. Two weeks
before the conference the workshop moderator will make the final selection and pub-
lish a programme for the workshop, also on codingdojo.org. This programme will
include timings and information about which kata each person is planning to perform,
and which programming language they plan to use.

4 Expected Workshop Outcomes

The basic aim of the workshop is to help all participants to improve their practice of
TDD. The code which each performance results in will be published online. If the kata
is not already included in the catalogue on codingdojo.org, it will be writen up there.

5 Presenter Bio

Emily Bache is an experienced software developer and Test Driven Development
practitioner. She regularly moderates coding dojo meetings and is a frequent contribu-
tor to the codingdojo.org website. Emily often speaks and leads tutorials at interna-
tional conferences, for example agile2008, Scandinavian Developers conference and
XP2007.

References

[1] http://codekata.pragprog.com/codekata/
[2] workshop “The coders dojo” at XP 2005 (2005)
[3] http://www.codingdojo.org

www.manaraa.com

Business Value Game

Artem Marchenko1 and Vasco Duarte2

1 Nokia, Visiokatu 3, FIN-33720 Tampere, Finland
artem.marchenko@nokia.com

2 Nokia, Kaj Franckin Katu 1A 8, FIN-00560 Helsinki, Finland
vasco.duarte@nokia.com

Abstract. Agile teams want to deliver maximum business value. That’s
easy if the on-site Ccstomer assigns business value to each story. But how
does the customer do that? How can you estimate business value? This
workshop is run as a game, where teams have to make tough business
decisions for their ”organizations”. Teams have to decide which orders
to take and what to deliver first in order to earn more. The session gives
the participants basic business value estimation techniques, but the main
point is to make people live through the business situation and to help
them feel the consequences of various choices.

Keywords: business value, game, workshop.

1 Introduction

If you want to be a successful software development company, you have to make
sure you work on the stories that bring most value to the customer. Ideally you
have an on-site customer that can tell you which story can bring most value.
What do you do if you don’t have luxury of having the on-site customer? Or
how does on-site customer decide what is of the biggest importance to him? How
does your company prioritize epics, stories and projects? This session gives you
some simple business value estimation techniques that are ”good enough” for
the everyday use.

2 Playing with Business Value

The session is run as a game, where teams of ”businesspeople” have to make
plans for their development team. The goal of the game is to earn as much
money as possible by delivering features and stories with the highest possible
business value, like in the XP Game. This game is a complement to the XP
Game: how do these ”business value points” on the XP Game story cards get
chosen?

Each businessperson in the team represents one or more clients (Fig. 1) who
will buy the team’s product IF their feature(s) is in the product. The team
is going to have to make some tough decisions; the team is going to have to
disappoint some clients, because the development team has a finite capacity.

We provide the clients and their wishes. We suggest the techniques to estimate
business value. The rest is up to you.

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 219–220, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.manaraa.com

220 A. Marchenko and V. Duarte

Fig. 1. Client looking for more workforce

3 The Length of Workshop and Planned Number of
Participants

The workshop takes 2-3 hours with a coffee break in the middle. When less time
is available we cut out the non-critical steps, when more time is available we
have an opportunity for larger and more productive discussions. When there are
many people (e.g. 100), full three hours may be needed for the best results. The
workshop can be played with any number of participants from 18 to 100. Ideal
number is 30-60 people.

4 The Intended Audience and Expected Benefits of
Attendance

Participants to planning games, especially product owners and on-site customers;
business people; customers; those who teach or coach the preceding roles. No
preparation is needed and the game should is of particular fun to the players
new to agile.

Participants will learn how to assign business value to projects and stories,
prioritize and make plans that bring value. They will also learn the ways for
teaching this.

This game was originally designed by Vera Peeters and Pascal Van Cauwen-
berghe and was first tried on Agile 2008, then run on XP days Benelux and
lately was a huge success on Scan-Agile conference in Helsinki.

www.manaraa.com

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 221–223, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Where Agile Research Meets Industry Needs: Starting
from a 10-Year Retrospective

Xiaofeng Wang1, Kieran Conboy2, Minna Pikkarainen3, and Michael Lane4

1 Lero, The Irish Software Engineering Research Centre, Limerick, Ireland
xiaofeng.wang@lero.ie

2 National University of Ireland Galway, Ireland
kieran.conboy@nuigalway.ie

3 VTT Technical Research Centre of Finland, Oulu, Finland
minna.pikkarainen@vtt.fi

4 University of Limerick, Limerick, Ireland
michael.lane@ul.ie

1 Summary

Research is often maligned for lacking relevance to industry. Does agile research
meet industry needs? The workshop sets out to understand where they meet and iden-
tify the gaps between them. Starting from a close look at what have been investigated
by agile researchers and what industry needs have been expressed by the time of the
10th edition of XP conference, we hope to draw a road map of high industry rele-
vance for future research to exploit.

2 Audience and Benefits

The workshop targets at both researchers and people from industry. The active par-
ticipation from both camps is crucial for the workshop to be successful. Therefore, in
addition to publicizing the workshop on the conference website, we will publicize it
through various channels of the organizers’ institutions, and to their academic and
industrial contacts. The workshop will be two to three hours in length, and open to the
participants of the conference. There are no requirements for participation.

We hope to provide a forum where agile researchers can exchange their experi-
ences and opinions and find a sense of community, and where agile practitioners
express issues and concerns in their mind, therefore both inform and be informed by
what has been achieved and what is going on in the research field. We plan to publish
what we learn from the workshop as a research note or position paper.

3 Overview of the Process

The workshop will start with a pre-conducted survey of the research papers and ex-
perience reports that have been published in the XP proceedings from 2000 to 2009.
Two taxonomies of agile topics will be constructed, which stand for the research

www.manaraa.com

222 X. Wang et al.

topics explored and industry needs expressed respectively over the last 10 years. They
serve as the start point of the workshop discussion which will be facilitated by the
organizers and conducted as follows.

Step 1: Introduction to the workshop and preparation

• Introduce the objective of the workshop and how it will be conducted;
• Briefly present the two lists of topics.

Step 2: The audience will be divided into “R(esearch)” and “I(ndustry)” groups for
group discussion. Each group will be facilitated by two of the organizers.

• For R group, there are three tasks to fulfill:

(1) Extend the initial research topics list from their own research and re-
search they are aware of. The extended list reflects the current state of
agile research topics;

(2) Further extend the list by adding the topics they wish to explore;
(3) Prioritize the topics.

• For I group, there are two tasks to fulfill:

(1) To extend the initial list of industry needs by adding their own needs;
(2) Prioritize the topics.

Rationales behind each item on the lists and prioritization need to be elaborated.

Step 3: Representatives of the two groups report on the working results.
Step 4: Compare and combine the two lists to identify gaps between them and pro-
duce a unified list for future research.

4 Bios of Organizers

Xiaofeng Wang currently works as a research fellow in Lero, the Irish software engi-
neering research centre. Her research areas include software development process,
methods, agile software development, and complex adaptive systems theory. Her
doctoral study investigated the application of complex adaptive systems theory in the
research of agile software development. She has also worked in a major IT company
in China and a research institute in Italy for several years in the area of enterprise
knowledge systems. Her publications include several journal and conference papers in
major IS journals and conferences.

Kieran Conboy is a lecturer in information systems at the National University of
Ireland Galway. His research focuses on agile systems development approaches as
well as agility across other disciplines. Kieran is currently involved in numerous na-
tional and international projects in this area, and has worked with many companies on
their agile initiatives including Intel, Microsoft, Accenture, HP, and Fidelity Invest-
ments. Kieran has chaired related conferences including the European Conference in
Information Systems (Galway 2008) the XP and Agile Development Conference
(Limerick 2008) and also has chairing roles at XP2009 and XP2010. Some of his
research has been published in various leading journals and conferences such as the

www.manaraa.com

 Where Agile Research Meets Industry Needs: Starting from a 10-Year Retrospective 223

European Journal of Information Systems, the International Conference in Informa-
tion Systems (ICIS), the European Conference in Information Systems (ECIS), IFIP
8.6 and the XP200n conference series. He is also associate editor of the European
Journal of Information Systems. Prior to joining NUI Galway, Kieran was a manage-
ment consultant with Accenture, where he worked on a variety of projects across
Europe and the US. Kieran can be reached at kieran.conboynuigalway.ie.

Minna Pikkarainen has graduated from the Department of Information Processing
Science, University of Oulu and finished her PhD about the topic of improving soft-
ware development mediated with CMMI and agile practices at 2008. Minna has been
working as researcher and project manager in VTT Technical Research Centre of
Finland more than 11 years now. During that time she has worked in 18 industrial
driven research projects doing close industrial collaboration with 8 organizations in
Finland and in Ireland. Minna has participated as a key person for several large inter-
national ITEA project preparation work doing full project proposals and project out-
lines as collaboration together with large European level company networks (e.g.
Flexi and Evolve projects). During 2007 – 2009 Minna has been leading VTT re-
search group of the Large European projects called Agile ITEA (embedded agile
software development) and Finnish consortium of ITEI (project about open innova-
tions). Minna’s research has been published in several journal and conference papers
in the forums like ICSE, ICIS and Empirical Software Engineering Journal. So far
Minna has provided agile trainings,workshops and invited talks for 10 different indus-
tries related to agile methods. Minna has been member of Lero, The Irish Software
Engineering Research Centre since 2006. For the past 4 years, her work and publica-
tions have been focused on research in the area of agile software development.

Michael Lane is a lecturer in the department of computer science and information
systems at the University of Limerick, Ireland. Michael’s research interests revolve
around the area of distributed software development. His PhD research is investigat-
ing project management in distributed teams leveraging agile software development
practices. Prior to joining the University of Limerick in 2005, Michael had spent over
20 years in software development roles ranging from design and programming
of bespoke services in the direct marketing sector to research and development man-
ager of ERP products in the manufacturing sector. Michael’s contact details are
michael.lane@ul.ie.

www.manaraa.com

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 224–225, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Continuous Integration – How Do You Know That Your
Application Still Works?

Thomas Sundberg

Agical AB, Stockholm, Sweden
thomas.sundberg@agical.com

Abstract. I will demonstrate how to develop a web application and have some
degree of confidence that it still works after a developer has checked in new
code or made changes to the existing code base. We will use Java as develop-
ment language, Mercurial as version control system, Maven as build system,
Hudson as Continuous Integration server, JBoss as application server, JUnit as
primary test framework and Selenium to drive all GUI tests.

1 Intended Audience

Developers, managers and testers that develop web applications and want to find
out how easy it can be to get started with automated testing and Continuous
Integration.

We will use Java as development language, but the level of the programming will
not be advanced. This is not a programming workshop. Any participant familiar with
a c-like development language will be able to participate. C# developers should be
able to follow the examples easily.

2 Learning Outcomes

The expected benefits for the participants are that they will not only have a gut feeling
that automation is possible; they will know that it is doable and they have done it.
They will have tools like Maven, Hudson and Selenium up and running so a project
can be tested automatically every time a code base has changed.

Participants will know:

• How to set up a Continuous Integration environment with Hudson.
• How to integrate an automated testing environment for web applications using Se-

lenium.
• How to build and test a project with Maven.

Participants that expect to get a deep knowledge about any particular tool will be dis-
appointed. Developers that want to see that this mix of tools work together in a nice
way will be able to see and verify it for themselves.

www.manaraa.com

 Continuous Integration – How Do You Know That Your Application Still Works? 225

3 Process/Mechanics

This is a hands-on workshop. It will be divided into four parts.
The participants that want to take part in the programming need to bring a com-

puter that is able to hook up to the network and on which they can edit some Java
code. I will not require any particular development environment to be used. A simple
editor and an installed JDK 1.5 or higher should suffice. Participants are expected to
have knowledge and administrative rights enough be able to set an environment vari-
able on there laptop and run a program from a prompt.

Part one
Introduction and setting up the development environment. I will have a few slides
setting the stage and we will get Hudson, JBoss, Mercurial and Maven up and running
on a build server.

Part two
Hands on installation experience that will show how easy it is to get a prepared envi-
ronment up and running; I will supply the participants with a list of steps to perform
for each developer and CD with all the required tools.

Development; I will supply each development pair with different tasks that can be
implemented using test-driven development. The implementation can also be verified
with a Selenium-driven integration test, run through a browser. I expect that it will be
a lot easier if the participants work in pairs.

Part three
Setting up a local build server and trigger builds on it from the local Mercurial. That
is to perform the same setup as I showed during the introduction.

Part four
Retrospective and discussions the last 15 minutes.

4 Presenter

Thomas Sundberg is a consultant at Agical AB in Stockholm, Sweden. He has a Mas-
ters degree in Computer Science from the Royal Institute of Technology, KTH, in
Stockholm. He has been working as a Java developer the last ten years. His first ex-
perience with test driven development was with JUnit the autumn of 2000. He has
also worked as a lecturer at KTH teaching programming courses. There he realized
that students who solve programming assignments in pairs normally produce better
solutions compared to students working alone.

Thomas has set up and maintained Continuous Integration systems since 2004 at
different companies, including including a large Swedish-Japanese mobile phone
manufacturer.

www.manaraa.com

Executable Requirements in Practice

Pekka Klärck1, Juha Rantanen2, and Janne Härkönen3

1 Eliga Oy, Finland
peke@eliga.fi

2 Reaktor Innovations Oy, Finland
juha.rantanen@ri.fi

3 Reaktor Innovations Oy, Finland
janne.harkonen@ri.fi

Abstract. Executable requirements neatly combine two important XP
practices: user stories and acceptance testing. They enhance communi-
cation, ease following the number of running tested features during an
iteration, and work as regression tests in future iterations. This workshop
does not only give an introduction to this important process, but also
shows how it is used in developing a real system in front of the audience.
Some of the participants can even join the fun and get real hands-on
experience.

1 Overview

Requirements in general and executable requirements in particular are important
for all project members (customers, developers, testers, . . .) and this workshop
has something to offer to all these stakeholders. The workshop is suitable for both
practitioners and beginners. Beginners will get a deep introduction of executable
requirements and see how the process works. Practitioners can deepen their
knowledge, share their experiences, and also get hands-on experience.

Workshop starts with short introduction of executable requirements and ac-
ceptance test driven development (ATDD) process. The ATTD workflow,
Discuss–Distill–Develop–Demo, is explained to provide frame for rest of the
session. Additionally Robot Framework[1], the tool that is used to automate
acceptance test cases, is briefly introduced.

Preparations start by explaining an existing, partially complete application
which will be developed further during a mini-iteration. Existing acceptance tests
are demonstrated to provide understanding how acceptance testing has been
conducted earlier. One participant is selected to play the role of the customer
who will make the final decisions during the discuss and distill phases with help
of the audience. Additionally ten active participants will be selected to be part
of the development team and they will automate tests during the iteration in
a coding dojo session. Organizers are leading the development team and are
responsible for implementing the new features.

All the needed equipment is provided by the organizers.

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 226–227, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.manaraa.com

Executable Requirements in Practice 227

2 Simulation

2.1 Discuss (10 Minutes)

Starting point of discussion is a prioritized list of user stories with development
effort estimates. The customer selects items to be developed during the iteration
and general discussion about the selected items follows.

2.2 Distill (20 Minutes)

High level acceptance test cases are written in co-operation between the customer
and the development team. One of the organizers writes down the test cases in
format supported by Robot Framework. Also other participants can take part
in the discussion and help specifying the needed test cases.

2.3 Develop (90 Minutes)

Acceptance test cases are developed by the active participants with help of one of
the organizers. Test cases are implemented in coding dojo style by changing the
driver and co-driver for every five minutes. At the same time two organizers are
developing features to the application using unit level test driven development.
As soon as acceptance tests are ready, they are committed to the version control
system. Progress is monitored using the automatically executed test cases.

2.4 Demo (15 Minutes)

Created functionality is demonstrated by running the acceptance test cases and
manually exploring the new features. After the simulation there will be free
discussion.

3 About the Session Organizers

Pekka Klärck (born Laukkanen) is a tester-developer and software contractor
who works through his one-man-company Eliga Oy. Robot Framework concept
is based on his Master’s Thesis[2] he is still the lead developer of the framework.

Juha Rantanen and Janne Härkönen work as agile testing consultants at Reak-
tor Innovations, developing Robot Framework and helping customer teams in
organizing their test automation efforts. Juha has also studied acceptance test
driven development in his Master’s Thesis[3].

References

1. Robot Framework project web site, http://robotframework.org
2. Laukkanen, P.: Data-Driven and Keyword-Driven Test Automation Frameworks

(2006)
3. Rantanen, J.: Acceptance Test-Driven Development with Keyword-Driven Test Au-

tomation Framework in an Agile Software Project (2007)

www.manaraa.com

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 228–229, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Product Owners Jamboree

Patrick Steyaert and Tom Tourwé

patrick.steyaert@prosource.be
tom.tourwe@sirris.be

Brief Summary

Determining the features that should and those that should not be in your next product
release is riddled with ambiguity, uncertainty and value conflict. Prioritising the prod-
uct backlog according to business value is not easy when everyone has a different
understanding of the meaning of value and everyone estimates the business value of a
particular feature differently.

The product owner has a hard time reconciling management's strategic objectives
with end-user's concerns; "incremental elaboration of the product" features with (dis-
ruptive) innovation features; features that bring money now with features that may
bring money in the future; features that add functionality with features that add flexi-
bility; market segment A features with market segment B features; etc.

Silver bullets - an enlightened product owner, business cases, multi-criteria analy-
sis, etc. - may work in specific situations, but are hard to generalise or are not very
sustainable.

In this workshop we will explore how wisdom of crowds techniques can be ex-
ploited to improve the definition of product releases. Can a group of individuals col-
laboratively improve its understanding of what "business value" means? Can the
crowd provide more reliable value estimates? How can this acquired understanding of
value be used to improve the selection of features for the next product release?

These are questions we strive to answer, by means of a hands-on session with Re-
leasious, a tool that uses collaborative techniques to define product releases.

Expected Benefits for Participants

Participants will

• Learn how to turn the adagium "prioritise according to business value" into an
operational definition.

• Learn about the "myths" surrounding product backlog prioritisation.
• Broaden their view on prioritisation and business value: this session is based

on the newest state-of-the-art in the domain, resulting from the Flexi project.
Flexi is the largest industry-oriented European research project on agile soft-
ware development.

• Learn about lightweight methods, techniques and tools (developed during the
same Flexi project) that they can try out and apply in their own context.

Description + Process/Mechanics

Our goal is to have a very interactive workshop, with minimal ex-cathedra presenta-
tions. Participants can use Releasious, our custom tool, that uses collaborative tech-
niques to define product releases.

www.manaraa.com

 Product Owners Jamboree 229

We will start by briefly presenting 5 "myths of product backlog prioritisation", as a
motivation for our work. To introduce our state-of-the-art approach, we use a step-
wise process: we will mix a presentation of the necessary concepts with interactive
sessions, as described below.

During the workshop, participants will identify features for an example product
and define their value in three steps.

• First, they will use the Releasious tool to individually provide example prod-
uct features and define their value.

• Second, they will collaboratively define the "essential value drivers" for the
example product (i.e. the criteria defining business value for the product) by
means of a structured brainstorming workshop. Knowledge from the first
step will be used as input.

• Third, they will use Releasious again to reconsider the value of their features,
and provide feedback on the value of other participants' features. This time,
they use the identified criteria and Kano analysis.

During the subsequent retrospective, we will analyse and discuss the results. We
will compare the results obtained from the first step with those obtained from the third
step, and compare the opinions of individuals with those of the group. This will also
allow us to evaluate the proposed approach and tool, discuss advantages and disad-
vantages, and possible improvements.

An initial agenda looks as follows:

• Introduction
• Just-do-it: gather features for the example product and define their value
• Evaluation and Retrospective
• Think: define essential value-drivers for the example product
• Iterate: prioritise features using Kano analysis and value drivers
• Evaluation and Retrospective
• Workshop evaluation and retrospective

Organizers' Background

Tom Tourwé works for the Software Engineering group of Sirris, the collective center
of the Belgian technology industry. Sirris advises and supports companies on the
implementation of technological innovations, enabling them to strengthen their com-
petitive position over the long-term. Tom is coordinating the Belgian activities in the
Flexi project, the largest industry-driven European project on agile software develop-
ment. While at Sirris, and during his previous academic career, he has organised over
20 workshops at many different events, conferences and symposia.

Patrick Steyaert is a Prosource Partner and Director of Assessments & Improve-
ments. He is responsible for appraising the maturity of software processes of software
organisations and for providing coaching on software process improvement pro-
grammes. He is an SEI trained CMMI specialist with more than 10 years of experience
in software management of product as well as project development. He is a Certified
ScrumMaster and has helped set up several agile software development teams.

www.manaraa.com

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 230–231, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Explaining the Obvious – How Do You Teach Agile?

Erik Lundh

Principal, Compelcon AB, Sweden
erik.lundh@compelcon.se

Abstract. Agile is now a hot topic and many organizations decide on adopting
“agile” without really knowing how and why. This workshop will explore how
fresh and seasoned agile coaches teach traditional and novel agile concepts, by
example, with discussions. All participants are invited to show and tell about
agile with an audience of peers. It might be the fresh first time with an audi-
ence, or golden hits that served you well for years.

Keywords: workshop, explaining agile, manifesting agile, canned experiences.

1 Introduction

We invite participants to share the proven and try the unproven with the audience.
The short takes on how to teach and interact with managers, developers, product
managers, project managers and of course were most of us started, with developers.
How do we help people “get” everything from fundamental engineering practices to
how to agile can fundamentally change a whole business for the better.

2 Workshop format

The organizer kick off the workshop with a few samples of “canned experiences” and
explanation material distilled from 10 years of teaching and evangelizing agile to eve-
rything from .developers to top management, in everything from VC startups to large
corporations like Ericsson and ABB.

Participants are then invited to give examples of the proven, and try new ap-
proaches in the preferred format of 2-5 minute lightning talks.

3 Workshop Organizer

ERIK LUNDH, Compelcon AB, has spent the last few years with Sweden’s largest
software development company group making a transition to agile for a R&D division
with 2300 people on 10 sites in 5 countries, forming and working with an interna-
tional group of 30 of the organizations own people as the agile coaches, supporting
around 200 teams.

Erik has 10 years of experience of successful agile transitions and 25+ years in
software development. He has served in most roles from developer to R&D manager

www.manaraa.com

 Explaining the Obvious – How Do You Teach Agile? 231

and board member. Companies from small but mature innovation firms, startups to
large organizations like Ericsson and ABB.

10 years as agile lobbyist and xp/agile coach in Sweden. Erik has attended all the
XP200x conferences and has contributed since XP2001. Erik is a founder of the inter-
national Agile Coaches Guild, a sponsor of Swedens SPIN chapters, and an active
industry member of the workgroup developing the first IEEE standard regarding ag-
ile, IEEE P1648 (“Recommended Practice for the Customer-Supplier Relationship in
Agile Software Development”) Agile Coaches Guild is an international network of
people interested in the art and improvement of agile coaching.

www.manaraa.com

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 232–233, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Architecture-Centric Methods and Agile Approaches

Muhammad Ali Babar1 and Pekka Abrahamsson2

1 Lero, Univeristy of Limerick, Ireland
malibaba@lero.ie
2 Univreisty of Helsinki

pekka.abrahamsson@cs.helsinki.fi

1 Overview

Agile software development approaches have had significant impact on industrial
software development practices. Despite becoming widely popular, there is an in-
creasing perplexity about the role and importance of a system's software architecture
in agile approaches [1, 2]. Advocates of the vital role of architecture in achieving
quality goals of large-scale-software-intensive-systems are skeptics of the scalability
of any development approach that does not pay sufficient attention to architectural
issues. However, the proponents of agile approaches usually perceive the upfront de-
sign and evaluation of architecture as being of less value to the customers of a system.
According to them, for example, re-factoring can help fix most of the problems. Many
experiences show that large-scale re-factoring often results in significant defects,
which are very costly to address later in the development cycle. It is considered that
re-factoring is worthwhile as long as the high-level design is good enough to limit the
need for large-scale re-factoring [1, 3, 4].

There is a growing recognition of the importance of paying more attention to archi-
tectural aspects in agile approaches [4-7]. Researchers and practitioners have also
identified the technical and organizational challenges involved in integrating Agile
approaches in traditional software development methods [8, 9]. Hence, it is an emerg-
ing consensus among researchers and practitioners that there is a vital need for devis-
ing a research agenda for identifying and dealing with architecture-centric challenges
in agile software development [10]. Such research agenda is expected to guide the
future research on integrating architectural methods in agile approaches and give ad-
vice to the software industry on dealing with architecture related challenges.

2 Objectives and Format

The overall goal of this workshop is to refine and further develop the research agenda
developed in the previous workshop. For developing such an agenda, the workshop
participants will participate in several activities such as brainstorming, and discussion
in order to reach consensus on important directions. To foster discussions at the work-
shop, the accepted papers will be put online before the event and the prospective par-
ticipants will be invited to read them as preparation for the workshop. Moreover, we
will also update the Wiki (http://www.acube-community.org) setup for the last work-
shop to reflect the research progress that has been made since the last workshop. Dur-
ing the previous workshop on this topic, held at XP08, the organizers and participants

www.manaraa.com

 Architecture-Centric Methods and Agile Approaches 233

identified several research questions that are expected to stimulate the group discus-
sions in the workshop. These questions are:

• How has the role of software architecture and software architects changed in
projects using Agile approaches and its impact on the quality of the products
and processes?

• What are the key architecture-centric challenges to implementing Agile
processes for developing large scale systems and potential solutions avail-
able to practitioners?

• How can the considerations for non functional requirements be appropriately
addressed while using Agile approaches?

• What are the prerequisites for integrating Architecture-Centric methods in
agile development and potential implications of such integration on the proc-
esses and products?

• What kind of training needs to be provided in the areas of architecture-centric
technologies (methods, techniques, and tools), customization and integration
of architecture-centric approaches into Agile software development process?

• How can the use of patterns by agile developers help address architectural is-
sues related to the required quality attributes?

• How does the architectural knowledge transfer from design to implementa-
tion in agile software development settings?

The workshop will be divided in two parts:

Part one will include short presentations of position statements and identification
of controversial topics. Part two will consist of focused brainstorming and discussion
activities in order to deliberate on the relevant issues and research questions.

References

[1] Kruchten, P.: Situated Agility. In: Proceedings of the 9th International Conference on Agile
Processes and eXtreme Programming in Software Engineering, Limerick, Ireland (2008)

[2] Kruchten, P.: Voyage in the Agile Memeplex. ACM Queue, 38–44 (July/August 2007)
[3] Boehm, B.: Get Ready for Agile Methods, with Care. IEEE Computer 35, 64–69 (2002)
[4] Ihme, T., Abrahamsson, P.: Agile Architecting: The Use of Architectural Patterns in

Mobile Java Applications. International Journal of Agile Manufacturing 8, 1–16 (2005)
[5] Nord, R.L., Tomayko, J.E.: Software Architecture-Centric Methods and Agile Develop-

ment. IEEE Software 23, 47–53 (2006)
[6] Parsons, R.: Architecture and Agile Methodologies - How to Get Along. In: WICSA (2008)
[7] Ali Babar, M., Abrahamsson, P.: Architecture-Centric Methods and Agile Approaches.

In: Proccedings of the 9th International Conference on Agile Processes and eXtreme Pro-
gramming in Software Engineering, Limerick, Ireland (2008)

[8] Lycett, M., Macredie, R.D., Patel, C., Paul, R.J.: Migrating Agile Methods to Standard-
ized Development Practice. IEEE Computer 36, 79–85 (2003)

[9] Boehm, B., Taylor, R.: Management challenges to implementing agile processes in tradi-
tional development organizations. IEEE Software 22, 30–39 (2005)

[10] Ali-Babar, M., Abrahamsson, P.: Architecture-Centric Methods and Agile Approaches.
In: Proceedings of the 9th International Conference on Agile Processes in Software En-
gineering and Extreme Programming (XP 2008) (2008)

www.manaraa.com

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 234–235, 2009.
© Springer-Verlag Berlin Heidelberg 2009

3rd International Workshop on Designing Empirical
Studies: Assessing the Effectiveness of Agile Methods

(IWDES 2009)

Massimiliano Di Penta1, Sandro Morasca2, and Alberto Sillitti3

1 Università degli Studi del Sannio, Italy
2 Università degli Studi dell’Insubria, Italy

3 Libera Università di Bolzano, Italy
dipenta@unisannio.it, sandro.morasca@uninsubria.it,

alberto.sillitti@unibz.it

Abstract. Assessing the effectiveness of a development methodology is diffi-
cult and requires an extensive empirical investigation. Moreover, the design of
such investigations is complex since they involve several stakeholders and their
validity can be questioned if not replicated in similar and different contexts.
Agilists are aware that data collection is important and the problem of designing
and execute meaningful experiments is common. This workshop aims at creat-
ing a critical mass for the development of new and extensive investigations in
the Agile world.

Keywords: Empirical investigation, data collection.

1 Introduction

Software engineering continuously introduce new development methods, techniques,
and tools, which promise cost savings, reduced development time, better product
quality, etc. However, when practitioners need to adopt a specific method, technique,
or tool, they would like to have evidence that such method, technique, or tool produce
the benefits promised.

Sensible evidence to substantiate claims can be provided via rigorous empirical in-
vestigation of methods, techniques, and tools in different contexts, to assess their
strengths and weaknesses, and their suitability for specific needs of the practitioners.
Such evaluations are complex since several variables need to be taken into account (e.g.,
background of the people involved, techniques used, working environment, technolo-
gies and tools adopted, etc.). Moreover, there are several different types of empirical
study (e.g., surveys, case studies, and controlled experiments), each of which provides
different degrees of strength and appropriateness to validate different kinds of empirical
questions and contexts.

Rigorous procedures should be followed during an empirical study. When designing
and conducting an empirical study, the investigator needs to make several decisions,
including how to perform the study and which kind of data collect, e.g., measure the
contextual factors that affect the study, choose the subjects and objects of study, etc.

www.manaraa.com

 3rd International Workshop on Designing Empirical Studies 235

These are a few possible problem that may arise if the investigator does not follow a
rigorous procedure or makes wrong choices: data may fail to support even a true hy-
pothesis, or, conversely, false hypotheses may be believed to be true because of inade-
quate evidence; insufficient documentation of contextual factors may prevent other
people from adequately replicating a study, so the results may not be fully comparable
and combinable; an insufficient number of data points may result in a non-statistically
significant result.

In summary, the effort required to design and conduct an empirical study may be
large and tedious, and many chances for error exist during the design of a study.

We believe that at least some of these problems may be addressed by brokering
collaborations:

1. Allowing for replicating studies. This would produce several kinds of bene-
fits, such as increasing the external validity of results (due for example to the
heterogeneity of the employed subjects) or increasing their statistical power,
by combining data from a series of experiments;

2. Collect and share “best practices” information regarding the design and con-
duct of empirical studies

3. Develop community-wide resources — e.g., analysis/recording tools, coding
schemes, and repositories — that may be applied by many researchers to in-
vestigate many different research questions.

2 Goals

The goal of this workshop is to foster collaborations among researchers interested in
conducting empirical research to assess the effectiveness of Agile Methods. The
workshop is intended as a meeting forum where researchers will discuss and plan to-
gether joint empirical studies. As previously mentioned, the design of such studies is
tricky, and there are many obstacles to replication.

A similar workshop has been organized at the International Conference on Pro-
gram Comprehension (ICPC) in 2006 and in 2007. In such cases, the focus was on
designing empirical studies for program comprehension. In this edition, we have de-
cided to focus on designing empirical studies for assessing the effectiveness of Agile
Methods.

In the previous editions, a number of open research issues have been identified. We
hope to establish collaborations to reach a critical mass for the replication of a se-
lected set of studies. Often, a single research group conducts a user study whose result
suggests a trend but lacks statistical significance because the group cannot assemble a
sufficiently large subject pool. If multiple research groups run independent studies
using the same material, a meta-analysis may be able to combine these studies to yield
a statistically significant result. By planning these independent studies and then per-
forming a meta-analysis, we could learn much about how to deal with this general
problem. To facilitate replication, one important issue to be discussed in the workshop
is how to package and share materials and results to facilitate replication and make
sure to learn from mistakes occurred in the first replications, e.g., improving the ex-
periment design or material whenever needed.

www.manaraa.com

Telling Your Stories:

Why Stories Are Important for Your Team

Johanna Hunt1 and Diana Larsen2

1 University of Sussex, Falmer, Brighton, United Kingdom
j.m.hunt@sussex.ac.uk

2 FutureWorks Consulting LLC, USA
dlarsen@futureworksconsulting.com

http://futureworksconsulting.com

Abstract. We all tell stories. The stories we share are shared to some
purpose; e.g. to communicate ideals, to share knowledge, to warn, to
entertain, to educate or show status. The story we tell changes depend-
ing on the context – when we tell it and who we are telling it to – and
how we choose to tell it is also revealing of our values and underlying
beliefs. This workshop is designed to explore the way we tell our stories,
and practice telling and retelling stories through a series of collaborative
story-games. Attendees will help to explore the possibilities for design-
ing a set of storycards to help teams construct and tell stories around
software projects.

Keywords: communication, culture, learning, organization, play, story-
telling, team.

1 Workshop Overview

Stories surround us and shape our world. Stories can be the fairy and folk tales
of our childhood, or just the mundane tale of “why I was late to that meeting.”
Storytelling is a medium of connectivity and community: the stories we choose
to tell reflect our beliefs, our values and our fears and are a powerful tool for
coordinating understanding and transferring knowledge and wisdom. Stories are
interpretive, told by the teller to some purpose, enhanced, enriched and infused
with meaning. They are thus inevitably more about the way an experience was
understood, rather than ‘the facts’. This is not a weakness of storytelling, but a
chance to engage with the meaning as presented by the teller.

In recent years storytelling and narrative research has undergone a massive
revival: psychologists study the way individuals understand themselves and form
their identity through the stories they tell; social scientists look at the stories
told by groups and communities; while the field of organizational storytelling
(within business and organization studies) is daily gaining momentum into the
study of how organizational culture, politics and change shapes, and is shaped
by, the stories told by the individuals within it. While the implications and

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 236–237, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.manaraa.com

Telling Your Stories: Why Stories Are Important for Your Team 237

effectiveness of using stories as a tool for change is still under debate, the power
of investigating and listening to them as a method of inquiry is undisputed.

This session aims to engage in a highly-participative fashion; by working with
your own stories to look at values and cultures reflected by the stories told, to
work with different interpretations of the same story, to consider collaborative
storytelling for team-building, and to explore possibilities for designing a tool to
help groups collaboratively tell stories together.

1.1 Content and Process

This session will begin with a brief introduction to stories and aspects of organi-
zational storytelling and narrative research. We will warm up by collaboratively
telling fictional stories using storycards. In groups, each person will then be asked
to tell a story about a particularly memorable working experience they have had.
The group will then choose a favourite story to retell and analyse further, before
exploring possibilities and generating suggestions for a set of storycards to help
teams tell and analyse their own stories. We will then draw out what people
might find useful in considering stories in this manner, as well as their thoughts
on how this could be used by teams for formation, co-ordination, and problem
understanding.

1.2 Deliverables and Outcomes

By attending this workshop you will have the chance to learn more about the
stories you tell – to explore different perspectives on the same story and consider
some of the differing ways that stories can be value-laden – as well as partici-
pating in exploring possibilities for a set of storycards to help teams investigate
their own values, beliefs and concerns through collaborative storytelling.

A summary of the workshop will appear on the Agile Narratives website
(http://www.agilenarratives.org), a programme of the Agile Alliance.

2 Biography

Johanna Hunt is a PhD researcher looking at organizational storytelling dur-
ing software development process change at the University of Sussex, UK. She
leads postgraduate classes on research methods and group processes for interdis-
ciplinary teams as well as acting as an agile coach and retrospective facilitator.
Joh is co-chair of the Agile Alliance funded Agile Narratives project and has a
passion for traditional storytelling.

Diana Larsen partners with clients in the software industry to support their
efforts to create resilient workplaces, improve project performance, and thrive in
times of change. In addition to consulting with teams and leaders on adopting
agile approaches, she leads team, project, and whole system processes for collab-
orative thinking and planning. Currently serving as chair of the Agile Alliance
board, Diana co-authored ‘Agile Retrospectives: Making Good Teams Great!’
with Esther Derby.

www.manaraa.com

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 238–239, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Elements of an Art - Agile Coaching

Erik Lundh

Principal, Compelcon AB, Sweden
erik.lundh@compelcon.se

Abstract. This tutorial gives you a lead on becoming or redefining yourself as
an Agile Coach. Introduction to elements and dimensions of state-of-the-art Ag-
ile Coaching. How to position the agile coach to be effective in a larger setting.
Making the agile transition – from a single team to thousands of people. How to
support multiple teams as a coach. How to build a coaches network in your
company. Challenges when the agile coach is a consultant and the organization
is large.

Keywords: tutorial, agile coaching, scaling up agile.

1 Introduction

What is an Agile Coach? What is not agile coaching? How do I start and grow as an
Agile Coach? Professional coaching organizations define coaching as helping people
use the knowledge they already have. Agile coaches, however, often have to double
as teachers bringing in knowledge to the team and the rest of the organization.

Some of us, proud to call ourselves seasoned agile coaches; never stand between
the team and the people they have to work with. Most agile coaches cherish the
moment when the team take over and fly!

What are the necessary skills for an agile coach? Of course we need to master how
to do and coach key agile techniques like TDD, pair programming, continuous
integration, refactoring etc. We need to help teams and their partners to be successful
with low-fi, getting-things-done style planning and retrospectives.

But we also need to understand the different personalities (and their dynamics) of
individuals and teams. How teams form and respond to changes. How different
personalities interact. How different people learn.

We will talk about having the courage to not stick with the team. Being a
successful agile coach is often a transitional relationship with a team.

Different talents acting together as agile coaches can outperform the single hero
coach. As an agile coach, we need to recognize our unique strengths, but not limit us
to what we do best.

2 Format

We start with an introduction to elements and dimensions of state-of-the-art Agile
Coaching. We then move to how to position the agile coach to be effective in a

www.manaraa.com

 Elements of an Art - Agile Coaching 239

larger setting. Erik shares his take on making the agile transition – from a single
team to thousands of people. And you get some insight in how to support multiple
teams as a coach. If you are in a big organization you will learn something about
how to build a coaches network in your company. We motivate this by discussing
the challenges when the agile coach is a consultant and the organization is large. Erik
also hopes to showcase some of the “canned” experiences and metaphors that are
useful to explain agile.

3 Presenter

ERIK LUNDH, Compelcon AB, has spent the last few years with
Sweden’s largest software development company group making
a transition to agile for a R&D division with 2300 people on 10
sites in 5 countries, forming and working with an international
group of 30 of the organizations own people as the agile
coaches, supporting around 200 teams.

Erik has 10 years of experience of successful agile transitions
and 25+ years in software development. He has served in most
roles from developer to R&D manager and board member.
Companies from small but mature innovation firms, startups to
large organizations like Ericsson and ABB.

10 years as agile lobbyist and xp/agile coach in Sweden. Erik has attended all the
XP200x conferences and has contributed since XP2001. Erik is a founder of the inter-
national Agile Coaches Guild, a sponsor of Swedens SPIN chapters, and an active in-
dustry member of the workgroup developing the first IEEE standard regarding agile,
IEEE P1648 (“Recommended Practice for the Customer-Supplier Relationship in Ag-
ile Software Development”) Agile Coaches Guild is an international network of people
interested in the art and improvement of agile coaching.

www.manaraa.com

A Survey on Industrial Software Engineering

Adnan Causevic1, Iva Krasteva2, Rikard Land1, Abdulkadir S.M. Sajeev3,
and Daniel Sundmark1

1 Mälardalen University, Mälardalen Real-Time Research Centre, Väster̊as, Sweden
adnan.causevic@mdh.se

2 Sofia University, Faculty of Mathematics and Informatics, Sofia, Bulgaria
3 University of New England, School of Science and Technology, Armidale, Australia

Abstract. In this paper, we present on-going work on data collected by
a questionnaire surveying process practices, preferences, and methods in
industrial software engineering.

Keywords: Agile methods, Software Engineering, Testing, CBSE.

1 Introduction

Empirical research is vital for the success of the discipline of software engineer-
ing [1]. Well designed surveys are required to collect data for practical valida-
tion of hypotheses developed from theory and literature. This paper presents
on-going work on data from a web-based questionnaire, surveying current pro-
cesses, practices, and methods in the software industry. In the questionnaire, we
studied three focus areas both separately and in combination:

– The adoption and benefit of different (particularly agile) process practices.
– The state of practice concerning software components in industry.
– The use, and sufficiency, of different testing methods.

The survey was anonymous, but respondents were given the choice to provide
company and project name, to allow correlation of responses from the same
organization. Respondent invitations were primarily sent to industrial partners in
the FLEXI1 and NESSI2 european research projects. In addition, we encouraged
the recipients to further spread the invitation.

2 Survey Contents

This survey included a comprehensive collection of questions based on process
practices (e.g. [2]), component-based development and testing. The questions
were divided into eight groups as shown in Table 1.

1 www.flexi-itea2.org
2 www.nessi-europe.com

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 240–241, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.manaraa.com

A Survey on Industrial Software Engineering 241

Table 1. Question Groups in the Survey

Question group Purpose

G1. Demographic aspects Collect demographic data about the respondent.

G2. Project and product Gather information about characteristics
characteristics of the software and the project

G3. Software development Investigate software development process practices
process practices — both current and ideal situation.

G4. Software Testing Collect information about software testing
practices within the organization

G5. Component Collect information about component characteristics,
development as well as the development process.

G6. System characteristics Gather system characteristics.

G7. System development Collect information regarding component selection
and system development.

G8. Discretional Optinal provision of organization and project name, to
information allow correlation of responses from same organization.

3 Ongoing Data Analysis and Future Work

We received 93 responses of which 42 responses were complete3. Since we en-
couraged recipients to further spread the invitation, we cannot determine the
response frequency, nor which organizations are represented in the responses.
This type of convenience sampling is suitable to collect empirical data explor-
ing “how” questions, but during any statistical treatment of the data, we must
consider the generalisability limitations imposed. Using both quantitative and
qualitative analysis, we plan to study:

– Process practices and preferences, and industry demographics correlations.
– Environmental and project characteristics that are important when adopting

agile development to different domains and project settings.
– Agility (e.g. embracing change) using black-box non-in-house components.
– System and component verification when reusing components in new con-

texts.
– Possible agile transitioning limitations by current testing techniques and tools.
– How traditional testers fit into an agile context and what their role would be.

References

1. Basili, V.R.: The role of experimentation in software engineering: past, current and
future, Keynote presentation. In: 18th International Conference on Software Engi-
neering, Berlin, Germany (1996)

2. Beck, K., et al.: Manifesto for Agile Software Development, agilemanifesto.org
3. Causevic, A., Krasteva, I., Land, R., Sajeev, A.S.M., Sundmark, D.: An Industrial

Survey on Software Process Practices, Preferences and Methods, MRTC Report,
Mälardalen University, Sweden

3 Full survey response data is provided in [3].

www.manaraa.com

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 242–244, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Modeling Spontaneous Pair Programming When New
Developers Join a Team

Ilenia Fronza and Giancarlo Succi

University of Bozen-Bolzano, Via della Mostra 4,
39100 Bolzano, Italy

{Ilenia.Fronza,Giancarlo.Succi}@unibz.it

Abstract. We present a study on how Pair Programming (PP) facilitates the in-
troduction of new developers (novices) in a team. We analyzed the behavior of
an industrial team of developers for 10 months focusing on spontaneous PP.
During such time novices joined the team. Data has been collected non-
invasively on how people paired during such time. Plots and sociograms are
used to analyse such data and infer possible conclusions. It appears that initially
PP is used to initiate the novices, then it is drastically reduced to be resumed
eventually when the novices “feel” they have reached a significant level of ma-
turity in the team.

Keywords: Pair Programming, Technology Transfer, Novices Integration,
Team Social Network, Team Development, Sociograms.

1 Introduction

Pair Programming (PP) is claimed as an effective means for knowledge transfer when
new members join a team [1],[6],[7]. The occurrence of spontaneous PP in a team is
explored in [4]: novices are shown to do PP more during their first month in the team
than veterans. In the second month, novices drastically reduce their time spent work-
ing in pairs, while experts do PP for about the same percentage of their total time. The
analysis of the results in [4] raises two different possible scenarios:

1. Novices are completed integrated in the team after their first month of training.
2. The observed behavior is only a phase in a more complex process of integration.

2 Description of the Study and Results

We analyzed 10 months of work of a team, composed of 17 developers, 15 existing
team members and 2 new team members, which joined the team at the starting of this
research. The team is part of a software division of a large company and uses sponta-
neous PP and other XP practices. We focused on observing and trying to understand
the effects of PP on novices integration. In this sense, this work is the continuation of
the analysis started in [4], which analyses only a limited timespan.

www.manaraa.com

 Modeling Spontaneous Pair Programming When New Developers Join a Team 243

We proceeded as follows:

1. We evaluated the monthly effort spent doing PP by the team as a whole and by
the experts and the novices separately.

2. We built for each month a table containing for each developer who did PP the
percentages of time (respect to his/her total work time) he/she spent with each of
his/her partners.

3. We analyzed the trends through plots over time of the data found in the first step.
4. We used the tables built in the third step to create sociograms. Each developer is

represented by a circle. The color of the circles represents the expertize of the de-
velopers and the size of the circles depends on the amount of time the developers
spent in PP. Each circle is connected by edges to all the circles representing the
developers he/she did PP with in that month. Edges thickness depends on the ef-
fort the two developers spent together.

The analysis suggests that PP promotes novices integration with a sequence of 4 well
identified phases:

1. In the “initiation” phase (first month) novices spend a significant amount of time
working with experts to be initiated to the new working environment.

2. During the second phase, novices aim at achieving “independence;” for about
two months novices work mostly alone, consolidating their knowledge. When PP
occurs, though, it is with experts.

3. During the third phase novices gain a “maturity” status in the team; they start
back doing PP but mostly among themselves. This phase lasts about 4 months.

4. The fourth phase is the complete “integration” of novices in the team. PP occurs
with all the team members in a way not different from the other team members.

The strengths of this approach are that:

1. It uses data from experienced developers working in their environment [3] in-
stead of describing students behavior or professional working on controlled tasks.

2. It analyzes spontaneous PP, meaning that developers work in pairs spontane-
ously, that is, when they think that it is most effective.

3. The timeframe is quite large, 10 months, to follow the overall integration process
of novices.

4. Sociograms are used to support the creation of the integration model.
5. We use the results of the observational study to suggest an integration model,

which we compare with available group development models [2],[5].

References

1. Benedicenti, L., Paranjape, R.: Using Extreme Programming for Knowledge Transfer. In:
Proceedings of 2nd International Conference on Agile Processes and eXtreme Programming
in Software Engineering – XP 2001, pp. 75–78 (2001)

2. Charrier, G.O.: Cog’s ladder: a model of group growth. SAM Advanced Management Jour-
nal 37, 30–38 (1972)

www.manaraa.com

244 I. Fronza and G. Succi

3. Coman, I., Sillitti, A.: An Empirical Exploratory Study on Inferring Developers’ Activities
from Low-Level Data. In: Proceedings of 19th International Conference on Software Engi-
neering and Knowledge Engineering – SEKE 2007, pp. 15–18 (2007)

4. Coman, I.D., Sillitti, A., Succi, G.: Investigating the Usefulness of Pair-Programming in a
Mature Agile Team. In: Proceedings of 9th International Conference on Agile Processes and
eXtreme Programming in Software Engineering – XP 2008. LNBIP, vol. 9, pp. 127–136.
Springer, Heidelberg (2008)

5. Jones, J.E., Pfeiffer, J.W.: The 1975 Annual handbook for group facilitators. Pfeiffer & Co.
(1975)

6. McDowell, C., Werner, L., Bullock, H., Fernald, J.: The effects of pair-programming on
performance in an introductory programming course. SIGCSE Bulletin 34, 38–42 (2002)

7. Vanhanen, J., Korpi, H.: Experiences of Using Pair Programming in an Agile Project. In:
Proceedings of 40th Annual Hawaii international Conference on System Sciences – HICSS
2007, pp. 274–283 (2007)

www.manaraa.com

Summary Reporting for a Linked Interaction

Design-Scrum Approach: How Much Modeling
Is Useful?

Frank Keenan, Namgyal Damdul, Sandra Kelly, and David Connolly

Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
{frank.keenan,namgyal.damdul,sandra.kelly,david.connolly}@dkit.ie

Abstract. Identifying the minimum beneficial modeling to support an
agile development team is crucial. Often, story cards arranged on wall
charts or spontaneously drawn diagrams provide sufficient detail to allow
a team to understand an emerging problem. However, what is beneficial
when a new stakeholder joins a team after development has commenced
and needs to have project background and progress reported? This poster
reports on the models produced by a process combining aspects of In-
teraction Design (ID) and Scrum for internet development in such a
scenario.

Keywords: Scrum, Interaction Design, Persona, Modeling.

1 Introduction

Despite the reported popularity and success of Agile methods (AMs), problems
have been documented in their use, particularly for internet development. Usu-
ally, internet applications are designed and developed to be used by a particular
audience. Before beginning development it is important to clearly identify the
main user groups and their anticipated outcomes so that subsequent effort can be
more focused and better managed. However, GUI-intensive projects are generally
considered a challenge for AMs with user interface design largely ignored. One
particular problem, in contrast to ID, is that AMs typically ignore consideration
of user experience before development begins instead emphasizing collaboration
throughout the project to supply any information required about users.

This research combined aspects of ID and Scrum to enhance the development
of internet-based software development projects. Initially, stakeholders discuss
the problem to ensure they begin with a common understanding, summarized
in simple picture form. Personas and goals are used to provide the basis for
writing user stories for the product backlog. The objective here is to examine
the benefit of these models developed in reporting the problem overview and
progress to another stakeholder joining the project briefly. This idea of someone
parachuting into an agile development setting mid-project is common. Examples
include; a new member joins a team during development, a senior figure in the

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 245–246, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.manaraa.com

246 F. Keenan et al.

development organization wants to get an overview or assess progress, or a new
person takes over the customer role. Essentially, a key stakeholder wants to be
brought up to speed as quickly as possible.

1.1 Evaluation

A study was conducted with the computing students, divided into two similar
groups, with one following Scrum and the other the ID-Scrum process. Both
teams were required to address the same problem, a Timetabling system, within
3 months, on a part-time basis. About midway through the project each group
was required to present an overview of the project, progress to date and plans for
the next iteration. A post-graduate student with no previous knowledge about
the project, team, and status of the project performed this role. Each group
was given 15 minutes to explain the project and answer questions. In both cases
the visual artifacts were on display. For Scrum, this included stories organized
on a chart with sections indicating: backlog (to do), current iteration and work
completed. For the combined approach a problem overview, picture persona charts
and goals were also displayed. Predefined questions were asked to each group
relating to project background, target users, specific goals, process followed, how
was the problem determined, project progress, problems faced, plan to progress
and changes in the plan. The authors observed both sessions.

The Scrum group was able to describe their progress by demonstrating soft-
ware developed to date and wall charts. However, labored responses were offered
when asked about the general problem background, user groups involved and
planned tests. The group frequently reverted to using technical terminology.
A particular difficulty that was observed was the lack of focal point for the
discussion.

The ID-Scrum Group used the problem overview diagram to illustrate their
understanding of the problem highlighting different parts presented in diagram.
The group members seemed quite confident in their understanding of the prob-
lem. This appeared accurate as they could point and refer to different parts of
the diagrams. Multiple users had been identified and the need for the different
features could be clarified from the overview diagram. They had a clear agreed
definition of the project goal. The problem overview had helped in identifying the
potential target users, stakeholders and their roles. Thinking like the personas
had helped identify stories, prioritize these and identify key tests conditions. At
this stage, all stories had been developed for the primary persona However, the
personas and stories were not explicitly linked.

This student exercise, although limited, has provided positive feedback indi-
cating that this combination, generating simple models, is beneficial in explaining
a general project overview and progress to someone who has parachuted into a
live project.

www.manaraa.com

Software Product Line Engineering Approach

for Enhancing Agile Methodologies

Jabier Martinez1, Jessica Diaz2, Jennifer Perez2, and Juan Garbajosa2

1 Fundación European Software Institute (ESI-Tecnalia)
Parque Tecnológico 204 E-48170 Zamudio, Bizkaia, Spain

jabier.martinez@esi.es
2 Technical University of Madrid (UPM)

SYST Research Group
E.U. Informática. Ctra. Valencia Km. 7. E-28031 Madrid

yesica.diaz@upm.es, jennifer.perez@eui.upm.es, jgs@eui.upm.es

Abstract. One of the main principles of Agile methodologies consists
in the early and continuous delivery of valuable software by short time-
framed iterations. After each iteration, a working product is delivered
according to the requirements defined at the beginning of the iteration.
Testing tools facilitate the task of checking if the system provides the ex-
pected behavior according to the specified requirements. However, since
testing tools need to be adapted in order to test new working prod-
ucts in each iteration, a significant effort has to be invested. This work
presents a Software Product Line Engineering (SPLE) approach that al-
lows flexibility in the adaption of testing tools with the working products
in an iterative way. A case study is also presented using PLUM (Product
Line Unified Modeller) as the tool suite for SPL implementation and
management.

1 Introduction

Opposed to conventional evolutionary development in which stepwise refinement
leads to the final product through a number of iterations, in Agile methodologies
[1,2,3,4], a working product should be obtained after each iteration. It is also
important that this working product should be built according to the require-
ments defined at the beginning of the iteration so the iteration will be successful
only if the working product fulfills all these requirements. Therefore, a working
product is delivered at the end of each iteration by means of continuous inte-
gration (CI) [5]. CI includes practices such as compilation, executing automated
tests and software deployment. Testing tools provide automated support for the
testing process. The benefits of using these tools have been proven in conven-
tional methodologies. However, in agile methodologies, testing tools should be
capable to test new working products in each iteration in a flexible and rapid
way. In this sense, a significant effort has to be invested.

The contribution of this work consists in a SPLE approach for the adaption of
testing tools with the new working products delivered in each iteration. A core

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 247–248, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.manaraa.com

248 J. Martinez et al.

concept of SPLE is to take advantage of common features among the products
of a product line through the systematic reuse of these commonalities [6].

A case study is described to present our contribution. Particularly, the prob-
lem of developing a home automation system following SCRUM [7] and Test
Driven Development (TDD) [8] is presented. The SCRUM methodology implies
an incremental development and testing based on short time-framed iterations,
called sprints. Assuming that each sprint implies the development and integra-
tion of a new home device in the home automation system, the development of
a generic gateway, bridging the gap between any home automation system and
a test environment, is desirable.

For this reason, the gateway should provide mechanisms to be adapted in a
flexible and a systematic way, avoiding the redesign of a gateway for each specific
device or starting it from scratch. A domain analysis has been made focusing on
the gateway variability regarding on several types of possible devices and their
communication peculiarities. This study shows that a SPLE approach is not only
suitable for this problem, but also provides other benefits concerned to SPL such
as domain knowledge encapsulation or final product deployment. A solution is
illustrated using an independent domain SPL tool suite called PLUM (Product
Line Unified Modeller) [9] that supports all the proposed PL life-cycle using a
Model-Driven approach. This tool suite is used to manage gateway variability
for specific gateways derivation in a flexible way.

Acknowledgments

The work reported here has been partially sponsored by FLEXI FIT-340005-
2007-37 (ITEA2 6022) project and by UPM under their Researcher Training
program.

References

1. The agile manifesto, www.agilemanifesto.org (accessed February 2009)
2. Cockburn, A.: Agile Software Development: The Cooperative Game, 2nd edn.

Addison-Wesley Professional, Reading (2006)
3. Highsmith, J., Cockburn, A.: Agile software development: the business of innovation.

Computer 34(9), 120–127 (2001)
4. Abrahamsson, P.: Agile software development methods review and analysis. VTT

Electronics, 112, Tech. Rep. (2002)
5. Duvall, P., Matyas, S., Glover, A.: Continuous Integration: Improving Software

Quality and Reducing Risk. Addison-Wesley Professional, Reading (2007)
6. Pohl, K., Böckle, G., Linden, F.: Software Product Line Engineering: Foundations,

Principles and Techniques. Springer, Germany (2005)
7. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice-Hall,

Englewood Cliffs (2002)
8. Beck, K.: Test Driven Development: By Example. Addison-Wesley, Reading (2002)
9. Aldazabal, A., Erofeev, S.: Product line unified modeller (plum). In: Eclipse Summit

Europe (2007)

www.manaraa.com

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 249–250, 2009.
© Springer-Verlag Berlin Heidelberg 2009

FLEXI Project Management Survey∗

Anna Rohunen1, Lech Krzanik1, Pasi Kuvaja1, Jouni Similä1,
Pilar Rodriguez1,2, Jarkko Hyysalo1, and Tommi Linna1

1 University of Oulu, Department of Information Processing Sciences,
P.O.Box 3000, 90014 University of Oulu, Finland

2 Technical University of Madrid (UPM), E.U. Informatica,
Ctra. Valencia Km. 7, E-28031 Madrid, Spain

{Anna.Rohunen,Lech.Krzanik,Pasi.Kuvaja,Jouni.Simila,
Pilar.Rodriguez,Jarkko.Hyysalo,Tommi.Linna}@oulu.fi

Abstract. FLEXI Project Management Survey (FLEXI PMS) has been estab-
lished to gain detailed knowledge on how the software industry – in particular
successful companies – manages agile software development. FLEXI PMS in-
vestigates the actual agile values, principles, practices and contexts. The survey
is supported by a careful literature review and analysis of existing studies. Spe-
cial attention is attached to large, multi-site, multi-company and distributed pro-
jects – the target area of FLEXI project. The survey is intended to provide solid
data for further knowledge acquisition and project/company positioning with
regard to feasible agile management practices.

Keywords: Agile project management, agile software development.

1 Objectives

FLEXI Project Management Survey (FLEXI PMS) aims to discover good practices for
project management, with emphasis on multi-site, multi-company, distributed software
projects run by agile principles. The immediate objective is to survey the current state
of the art in agile project management and provide solid data for further knowledge
acquisition and project/company positioning with regard to agile management values,
principles, and feasible practices. Data gathered through the survey undergoes exhaus-
tive statistical analysis and comparisons with other research material. FLEXI PMS is
supported by tools which focus on efficiency and usability of the survey process. The
questionnaire is constructed to contain most critical items emerging in the field of dis-
tributed agile software project management, to be filled in a few minutes.

2 Background Material and Questionnaire

A collection of previous results, e.g., [1], [4], [5], has been carefully reviewed to define
the scope of existing studies and their relevance to the FLEXI profile. Quality of

∗ This work has been supported by ITEA2 project E06022 FLEXI, “Flexible global product

development and integration: From idea to product in 6 months.”

www.manaraa.com

250 A. Rohunen et al.

reference studies was evaluated with regard to possible sampling bias as a consequence
of not using a randomized sample. Measures were taken to avoid the problem by ap-
plying samples based on the wide range of various FLEXI partners’ characteristics.

The questionnaire structure can be mapped onto three fundamental dimensions. One
of them introduces a distinction between conventional agile and the extensions corre-
sponding to the FLEXI profile: multi-site, multi-company and distributed projects – the
latter occasionally contradicting with the original agile assumptions. Another dimen-
sion differentiates between agile values, principles, practices and tools, and reflects a
context-driven approach [3]. The final dimension divides the survey into two stages:
the knowledge acquisition stage and the company/project positioning stage. The opti-
mal length, time needed to complete, clarity, as well as suitability and attractiveness
for various stakeholder roles are important questionnaire characteristics which contrib-
ute to the survey’s usability.

3 Results

Several experimental versions of FLEXI PMS have been released, populated and
evaluated. They used dedicated web based survey tools. The current version [2] in-
tends to deliver useful feedback already in early stages of the survey process. The
respondents are provided with a report including aggregated data regarding the two
stages – knowledge acquisition and positioning – subject to an assumed data security
policy. Both stages ultimately intend to relate a survey contribution to the ways how
successful companies are managing their agile software development. An exhaustive
statistical analysis is employed to investigate the data. The report is generated imme-
diately after taking part in the survey so that FLEXI PMS respondents can exploit the
results in their agile development activity without delay.

References

1. Ambler, S.W.: Agile Practices and Principles Survey (2008),
 http://www.ambysoft.com

2. FLEXI Project Management Survey (2009), http://www.flexi-itea2.org
3. Kruchten, P.: Situated agility: Context does matter, a lot. In: Keynote, XP 2008, Limerick

(2008)
4. Rumpe, B., Schröder, A.: Quantitative Survey on Extreme Programming Projects. In: Proc.

3rd Intl. Conf. on eXtreme Programming and Agile Processes in Software Engineering,
Alghero, Italy (2002)

5. Vijayasarathy, L., Turk, D.: Agile software development: A survey of early adopters.
Journal of Information Technology Management 19 (2008)

www.manaraa.com

Documentation by Example

Daniel Brolund

Agical AB, Västerlȧnggatan 79, Stockholm, Sweden
daniel.brolund@agical.com

http://agical.com

Abstract. Writing documentation can be fun and rewarding, but keep-
ing up with an ever-changing system can take a toll on that joy. The
documentation tends to get either expensive (duplication-intense), out-
dated or non-existing. This demonstration will present an open source
tool that addresses these shortcomings by extending the BDD[1] ap-
proach to provide rich and human readable documents automatically
from a JUnit[2] test suite. You’ll learn how to include snippets, run-time
data and more in your documents, all this with minimal effort and in-
trusion. This approach is suitable both for APIs and GUIs, as will be
shown.

Keywords: documentation, behavior-driven development, test-driven
development, Java, JUnit, Bumblebee, example, snippet.

1 Intelligent Information Extraction

Write once, extract many is the central mantra of this session and this tool.

– By pulling information from a tested and executing system in an intelligent
way, keeping documentation up-to-date is simplified.

– By intelligent naming of classes, methods and variables the effect is amplified,
since those names can be extracted and used in the documentation, a natural
extension of BDD.

– By keeping related example code and documentation text together, cohesion
is improved, especially compared to the word-processor approach.

– By automatic inclusion of runtime data such as executing variables values,
screen-shots, logs and more, even transient data is at hands reach. This
provides a great complement to Javadoc[3].

– By starting with the end user documentation, it is easy to know what parts
needs to be extracted and what really needs to be implemented. This will
also reveal glitches in the system that TDD[4] won’t expose.

This lessens the effort of keeping the documentation up to date which helps
reduce time to market, waste and stress. The documentation itself provides views
into the system that increases quality, understandability and is a great way to
put usability in the drivers seat.

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 251–252, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.manaraa.com

252 D. Brolund

2 The Tool in Short

The tool presented is Bumblebee[5]. It is an add-on to JUnit that renders a
human readable document each time the JUnit test suite is run.

The nested structure of the test nodes, i.e. the test-suite/test-case/test, will
reflect in the document structure as document nodes, i.e. section/sub-section/sub-
sub-section. The camel-cased [6] names of the test nodes will be de-camelcased
when presented in the document nodes. An example of this is would be a
suite- or case class name like TheInnerWorkingsOfTheParser that will be-
come The inner workings of the parser in the document, or a test-method
howToConfigureTheParser that becomes How to configure the parser.

In addition to the headers, comments in the suite class, test case class or test
method becomes the paragraphs of the section. The text can be formatted using
a wiki syntax. By the integration of JRuby[7] to execute the comment strings,
various tools are available to automatically include code snippets, runtime data
and more into the document, while at the same time allowing for extending the
toolbox.

3 Implementations

The tool has been used in production for a number of different purposes; end
user documentation of open source projects, e.g. dtangler[8] and Bumblebee
itself, integrated system surveillance and problem solving manual, and developer
documentation of the inner workings of an advanced Java-PL/SQL integration.

4 Audience

The primary target group is practicing Java developers that need to keep sys-
tem documentation up-to-date while not loosing pace in development. Learning
outcomes:

– Make documentation a fun part of every iteration without getting exhausted.
– Automate some of the most tedious parts of the documentation process.
– Keep the documentation in sync with the system.
– Make the documentation a part of the continuous integration loop.

References

1. BDD, http://en.wikipedia.org/wiki/Behavior_driven_development
2. JUnit, http://junit.org
3. Javadoc, http://java.sun.com/j2se/javadoc
4. TDD, http://en.wikipedia.org/wiki/Test_Driven_Development
5. Bumblebee, http://www.agical.com/bumblebee/bumblebee_doc.html
6. CamelCase, http://en.wikipedia.org/wiki/CamelCase
7. JRuby, http://en.wikipedia.org/wiki/JRuby
8. dtangler, http://www.dtangler.org

www.manaraa.com

Alaska Simulator - A Journey to Planning

Barbara Weber1, Jakob Pinggera1, Stefan Zugal1, and Werner Wild2

1 Quality Engineering Research Group, University of Innsbruck, Austria
{Barbara.Weber,Jakob.Pinggera,Stefan.Zugal}@uibk.ac.at

2 Evolution Consulting, Innsbruck, Austria
werner.wild@evolution.at

Abstract. The Alaska Simulator is an interactive software tool devel-
oped at the University of Innsbruck which allows people to test, analyze
and improve their own planning behavior. In addition, the Alaska Simula-
tor can be used for studying research questions in the context of software
project management and other related fields. Thereby, the Alaska Sim-
ulator uses a journey as a metaphor for planning a software project. In
the context of software project management the simulator can be used
to compare traditional rather plan-driven project management methods
with more agile approaches. Instead of pre-planning everything in advance
agile approaches spread planning activities throughout the project and
provide mechanisms for effectively dealing with uncertainty. The biggest
challenge thereby is to find the right balance between pre-planning activ-
ities and keeping options open. The Alaska Simulator allows to explore
how much planning is needed under different circumstances.

1 Introduction

The Alaska Simulator has been developed to support the teaching of planning
approaches and to facilitate the execution of controlled experiments investigat-
ing the strength and weaknesses of different planning approaches. Due to the
many similarities between software planning and journey planning the Alaska
Simulator uses a journey as a metaphor 1. The used metaphor is not only helpful
to explain agile and lean principles to people without significant experience in
the software engineering field, but is also an attractive context to be engaged in,
thus increasing the willingness of students to participate in experiments. In the
following we describe participating roles in the form of personas and how they
can interact with and benefit from the Alaska Simulator

– Steve Student: tests and analyzes his planning behavior with the simulator
and explores how much planning is just enough under different circumstances

– Rose Researcher: investigates the strengths and weaknesses of different plan-
ning approaches using the simulator

1 For a detailed description of the journey metaphor see the simulator’s website:
http://www.alaskasimulator.org as well as the simulator’s documentation.

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 253–254, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.manaraa.com

254 B. Weber et al.

– Isabel Instructor: demonstrates the different agile and lean principles using
a journey as a metaphor and explains the major differences between agile,
plan-driven and chaotic planning

The major features of the simulator are as follows:

– Plan and execute journeys: The Alaska Simulator allows to plan and
execute journeys in either an agile or a plan-driven way.

– Log journeys: Each step that is performed while planning and executing a
journey is logged.

– Replay journeys: To enable manual analysis of planning behavior, journeys
can be replayed step by step.

– Design journey scenarios: The Alaska Simulator allows researchers and
instructors to design their own journey scenarios including locations, actions,
events, constraints as well as the degree of uncertainty (for details see [1]).

– Analyze journeys: Instructors and researchers are supported in analyzing
the journeys after a planning session has been conducted.

Figure 1 illustrates the architecture of the Alaska Simulator which
has been implemented as an Eclipse Richt Client Platform (RCP) applica-
tion. For the Alaska Simulator itself three plug-ins org.alaskasimulator.core,
org.alaskasimulator.ui and org.alaskasimulator.help have been devel-
oped. Additional components are the Alaska Configurator as well as the Alaska
Analyzer.

XStream
com.thoughtworks.xstream

OSGI
org.eclipse.osgi.*

Equinox
org.eclipse.equinox.*

Platform Runtime
org.eclipse.core.*

E
cl

ip
se

 R
un

tim
e

JFace
org.eclipse.jface.*

SWT
org.eclipse.swt.*

Workbench
org.eclipse.workbench.*

E
cl

ip
se

 U
I

Alaska Help
org.alaskasimulator.help

GEF
org.eclipse.gef

Alaska Core
org.alaskasimulator.core

Alaska Configurator
org.alaskasimulator.configurator

Alaska UI
org.alaskasimulator.ui

Alaska Analyzer
org.alaskasimulator.analysisA

la
sk

a
T

oo
ls

et

Fig. 1. The Alaska Toolset

The Alaska Simulator including a test configuration, extensive documentation
and screencasts can be downloaded from http://www.alaskasimulator.org. The
Alaska Configurator and the Alaska Analyzer are available to interested parties
upon request.

Reference

1. Weber, B., Reijers, H., Zugal, S., Wild, W.: The declarative approach to business
process execution: An empirical test”. In: Proc. CAiSE 2009 (to appear, 2009)

www.manaraa.com

Using Metric Visualization and Sharing Tool to

Drive Agile-Related Practices

Tadas Remencius, Alberto Sillitti, and Giancarlo Succi

Free University of Bozen-Bolzano, BZ 39100, Italy
tremencius@unibz.it, asillitti@unibz.it, gsucci@unibz.it

Abstract. This paper presents a metric visualization and sharing tool
that supports management and control of Agile-related practices, such
as test-driven development, continuous integration, user stories, and pair
programming. The tool is part of a larger framework but can be used as
a stand-alone system. It integrates data coming from different sources:
automatic non-invasive data collection plug-ins, bug and task tracking
repositories, code parsers, manual user input, etc. The tool also pro-
vides customizable indicators that enable non-experts in the domain to
get the general status of the observed process or product at-a-glance.
The dashboard-based implementation of the tool is tailored to support
multiple user roles, including developers, managers, and even clients.

Keywords: Agile, metrics, visualization, sharing, dashboard, indicators.

1 Introduction

Collecting measurements about development related processes helps to under-
stand and control of what and why is actually happening. It is also a way of
generating and preserving experience of the company. Unfortunately, a number
of issues exist that have to be taken into account: the effort involved in data col-
lection and metric analysis, user acceptance and support, making use of collected
data, etc.

The tool we have developed aims to help address these issues. Instead of
imposing new rules and procedures on the existing processes, it aims on reusing
information sources already present in the company. This might be an issue
tracking system, task database or simply an XML file generated by a test-run.
Additional data are gathered by the non-invasive probes of the PROM framework
[1], which the tool is part of. These probes collect mostly effort related data (e.g.,
time spent working on a specific class) in an automatic way with no visible impact
on the performance of the monitored system.

The tool, called PROM Experience Manager (PEM) [2], is implemented as
a web-based dashboard. It serves as a graphical interface for the employees to
visualize, interpret and share software metrics. The idea is on one hand to provide
each user with a customizable viewpoint on the collected measures, and on the
other - to promote collaboration and experience sharing.

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 255–256, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.manaraa.com

256 T. Remencius, A. Sillitti, and G. Succi

2 Supported Agile-Practices

The tool can help monitor and get a better understanding on different aspects of
development process. The benefit it can provide, however, is largely dependent
on each particular case. So far PEM has been used in one industrial and in
two academic experiments. It showed that it was able to support four Agile-
related practices: (1) test-driven development, (2) continuous integration, (3)
user stories, and (4) pair programming.

PEM makes use of both unit test runs and test coverage information. Nor-
mally, this is extracted from XML files that are generated by development en-
vironments (such as Eclipse or Microsoft Visual Studio) or related tools and
plug-ins. The tool has a server side scheduler that handles all data imports and
caching. In a similar fashion the system gathers data related to continuous inte-
gration (e.g., from nightly-build logs of CruiseControl).

User stories and/or tasks are automatically imported from the repository used
by the company (e.g., Bugzilla, Microsoft TeamSystem, etc.). Automatically
collected effort is then mapped to user stories based on output of the Story
Point Manager Utility (SPM), which is also part of the PROM framework. SPM
is basically a manually controlled timer application that allows specifying the
active user story and developers who are currently working on it (multiple in case
of pair programming). Collected data are then integrated and visualized in PEM.
Each user can create customized views (or widgets) and perspectives (collections
of views) that can be shared with others. System-wide (visible to everyone) views
and perspectives are also supported. Interpretation rules can be defined for each
view and each perspective. These rules serve as mappings of metric values to
an abstract scale and express the general meaning or status of the value of the
metric. The concept that the tool is using is that of the “traffic lights”: (a)
red color stands for “bad”, “problem”, or “error” and implies that immediate
attention is required; (b) yellow represents a “warning”; and (c) green color
denotes that everything is “good” or “OK”. When enabled, these interpretations
are visualized as colored indicators and enable logged-in users to immediately see
the current state of the monitored system at-a-glance. Furthermore, indicators
allow non-experts to understand the meaning of metrics that normally require
specific domain-knowledge. They also help to spot inconsistencies and conflicting
interpretations of the same data by different users.

References

1. Sillitti, A., Janes, A., Succi, G., Vernazza, T.: Collecting, integrating and analyzing
software metrics and personal software process data. In: 29th Euromicro Conference,
pp. 336–342 (2003)

2. Danovaro, E., Remencius, T., Sillitti, A., Succi, G.: PEM: experience management
tool for software companies. In: 23rd ACM SIGPLAN Conference on Object Ori-
ented Programming Systems Languages and Applications, pp. 733–734. ACM, New
York (2008)

www.manaraa.com

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 257–258, 2009.
© Springer-Verlag Berlin Heidelberg 2009

ActiveStory Enhanced: Low-Fidelity Prototyping and
Wizard of Oz Usability Testing Tool

Ali Hosseini-Khayat, Yaser Ghanam, Shelly Park, and Frank Maurer

Department of Computer Science, University of Calgary
2500 University Dr. NW, Calgary, AB

Canada, T2N 1N4
{hosseisa,yghanam,parksh,maurer}@cpsc.ucalgary.ca

Abstract. This paper presents “ActiveStory Enhanced” as a tool that enables
prototyping user interfaces and conducting usability tests in a way that is
aligned with agile principles. The tool allows designers to sketch user interface
prototypes as well as add basic interactions to provide navigation. Sketching
can be done using a mouse or stylus on tablet PCs. Designers can then export
the prototype to a web-based Wizard of Oz testing tool, allowing test partici-
pants to remotely walk through a UI while recording metrics such as mouse
movements and time spent on pages. ASE improves on the original by provid-
ing some usability improvements, improved browser support, undo support,
more control over the design and an improved pen and paper metaphor.

Keywords: user-centered design, agile user experience design, tablet PC.

1 Introduction

With agile software development picking up increasing momentum and adoption over
the past few years, some are concerned that a lack of attention to usability concerns
has accompanied it1. Agile methods call for a reduction in the amount of time spent
upfront on design details. User-centered design (UCD) on the other hand tends to
involve a significant amount of upfront design work including prototype design and
usability testing. Agile and UCD practitioners have now turned their attention to uni-
fying usability engineering with agile practices [1, 2, 3, 4].

Low-fidelity prototyping involves drawing sketches of a prototype, usually on a
piece of paper. This method has been shown to require less upfront work as well as
focusing the participants’ feedback on widget choice, widget placement and UI be-
havior in the early stages, rather than color choice, alignment and other less important
superficial details [2]. Wizard of Oz testing consists of a person acting as the “wizard”
while the test participant is shown the pieces of paper with the prototype designs, one
page at a time. Whenever the user interacts with the interface, the wizard shows the
next page which corresponds with that interaction. The drawback to this technique is
that it traditionally requires the tester and participant to be collocated.

1 Substantial traffic in the agile-usability newsgroup at Yahoo supports this statement.

www.manaraa.com

258 A. Hosseini-Khayat et al.

2 ActiveStory Enhanced

ActiveStory Enhanced is a low-fidelity prototyping tool developed for the purpose of
designing and performing distributed usability testing on an application. The tool
allows designers to sketch user interfaces, add interactions and finally export the de-
sign to the web-based Wizard of Oz tool. Designers can use either a drawing tablet or
tablet PC to further optimize the design experience and bring it closer to an actual pen
and paper design feel.

2.1 Low-Fidelity Prototype Designer

The ActiveStory design tool allows designers to quickly draw user interfaces and link
them together. The pen and paper metaphor is maintained with pen and eraser modes
that allow the designer to draw on an ink surface. Interactions can be added to the
design. In ActiveStory, an interaction is simply a region (hotspot) on a page that, once
clicked upon, causes the system to load a new page. Designers can draw and erase
with mouse or stylus; use custom pen colors, pen sizes and canvas sizes; select ele-
ments of the drawing and move, resize and delete them; add interactions and set the
target page as well as resize and move the hotspot; and import existing images (e.g.
screenshots or visual elements).

2.2 Wizard of Oz Testing Tool

The testing tool is Microsoft Silverlight based web application that presents the
sketched prototypes to the test participant and handles navigations when a hotspot is
clicked. It can be viewed by participants anywhere on the web, using any mainstream
web browser and operating system. The Silverlight Wizard of Oz tool also collects
some metrics that might be of interest to the usability designers and testers including:
mouse behaviour (clicks and trails are presented to the tester by page, per user; or all
the movements for all users on a given page are shown); time spent on each page (per
user per instance of the page); clicks made on hotspots; and comments made by users
on each page (per instance of the page).

References

1. Constantine, L.L.: Process Agility and Software Usability: Toward Lightweight Usage-
Centered Design. In: Information Age (August 2002)

2. Barnum, C.: Usability Testing and Research. Pearson Education, New York (2002)
3. Patton, J.: Hitting the Target: Adding Interaction Design to Agile Software Development.

In: OOPSLA 2002, p. 1. ACM Press, New York (2002)
4. Sy, D.: Adapting Usability Investigations for Agile User-centered Design. Journal of Us-

ability Studies 2(3), 112–132 (2002)

www.manaraa.com

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 259–260, 2009.
© Springer-Verlag Berlin Heidelberg 2009

FitClipse: A Tool for Executable Acceptance Test Driven
Development

Shahedul Huq Khandkar, Shelly Park, Yaser Ghanam, and Frank Maurer

Department of Computer Science, University of Calgary
2500 University Dr. NW, Calgary, AB

Canada T2N 1N4
{s.h.khandkar,sshpark,yghanam,fmaurer}@ucalgary.ca

Abstract. FitClipse is an Eclipse plug-in for facilitating Executable Acceptance
Test Driven Development. The tool allows the users to edit acceptance tests,
automatically generate fixtures, execute tests and represent the test results
graphically including an option to view the test results history. The tool helps
with regression testing because it can distinguish between requirements tasks
that were never tackled before and tasks that were already completed but are
now failing again. FitClipse currently supports GreenPepper and Fit framework.

Keywords: Executable Acceptance Test Driven Development, Testing Frame-
work, Fit, Fitnesse, Greenpepper.

1 Introduction

Extreme Programming ensures the quality of a software development project through
unit testing and acceptance testing. Unit tests are used to verify the functionality of
the software system from the developer’s perspective and acceptance tests are used to
verify whether the functionalities of the system meet the requirement of the customer.
The agile methods suggest that there should be an acceptance test for every user story
and a user story should not be considered completed until the software implementa-
tion passes all acceptance tests.

Executable Acceptance Test Driven Development (EATDD) is an extension of
Test Driven Development (TDD). It is also known as Customer Test-Driven Devel-
opment. While TDD focuses on ensuring the system design and stability from the
developer’s point of view using the unit tests, EATDD starts from the customer’s
perspective to help developers better understand the requirements and validate their
development with the customer’s requirements.

There are several commercial and open source frameworks that support automated
acceptance tests. But due to the lack of proper IDE support, it becomes time consum-
ing and tedious for developers to write and maintain these acceptance tests. FitClipse
[1] is an Eclipse plug-in that solves this problem by providing the IDE support for
common acceptance test frameworks and additional features to extend the benefits
even more.

www.manaraa.com

260 S.H. Khandkar et al.

2 The Executable Acceptance Test Tool

FitClipse supports Fit [2] and Greenpepper [3] framework. The earlier version used a
wiki based framework FitNesse [4] to store the tests. But many developers expressed
that they want to store the tests with the development code to keep track of the changes
better. However, FitNesse requires a web server to host the test specifications. To
overcome this dependency, the current version of FitClipse replaced FitNesse with its
own file system, which allows the code and the tests to be stored together in a version
control system.

Fitclipse helps the test specification with a built-in WYSIWYG editor, which can
help write the test specifications within the IDE more easily. Fitclipse can automati-
cally generate the fixture stubs while you are designing the acceptance test specifica-
tions. Fitclipse comes with a test refactoring capability. It can synchronize any later
change in the acceptance test (i.e. defining new test scenario, changes in test data) with
related fixtures and helps reorganize the tests by automatically identifying the neces-
sary fixture changes. FitClipse provides an analysis on the progress of the software
development project using the test results history. The test result contains a statistical
report and possible causes of test failures (i.e. exceptions). Often there is considerable
delay between defining the acceptance test and its first successful pass. It is important
to be able to distinguish between tasks that were never passed before and tasks that
were already completed but whose tests are now failing for regression testing purpose.
FitClipse is available for download at http://ase.cpsc.ucalgary.ca/ index.php/FitClipse/
FitClipseFrameWorkInstallation.

References

1. Deng,C., Wilson, P., Maurer, F., FitClipse: A Fit-based Eclipse Plug-in For Executable
Acceptance Test Driven Development, Proc. of the XP 2007, Come, Italy 2007, Springer

2. Fit, http:// fit.c2.com
3. Greenpepper, http://www.greenpeppersoftware.com
4. Fitnesse, http://fitnesse.org

www.manaraa.com

P. Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 261–262, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Using Digital Tabletops to Support Distributed Agile
Planning Meetings

Xin Wang, Yaser Ghanam, Shelly Park, and Frank Maurer

Department of Computer Science, University of Calgary
2500 University Dr. NW, Calgary, AB

Canada, T2N 1N4
{xin,yghanam,parksh,maurer}@cpsc.ucalgary.ca

Abstract. Digital tabletop is an emerging technology that is being increasingly
used to support group activities. Agile Planner for Digital Tabletops (APDT) is
a tool that was built to support agile planning meetings. It provides interactions
similar to those used in traditional pen-and-paper meetings. Previous versions
of APDT were only capable of handling collocated planning meetings. In this
paper, we succinctly describe the new extension of APDT that provides support
for distributed planning meetings. A series of evaluations for the new version of
APDT has been conducted, and the feedback tends to be positive.

Keywords: Agile Project Planning, Digital Tabletop, Group Collaboration.

1 Introduction

Planning meetings are an essential group activity in software teams, especially agile
teams. They involve software developers, customers and other stakeholders. They are
often held before the beginning of a new iteration. Agile planning meetings can be
either collocated (stakeholders in the same physical space), or distributed. Previously,
we have studied and provided insights on how to use digital tabletops (APDT) for
collocated planning meetings [1]. When talking about distributed settings, however,
the matter seems to be much more challenging. Distributed planning meetings might
deteriorate the cohesiveness of the meeting flow, as well as the comprehension of
what needs to be done.

Understanding the intricacies of distributed settings, here we discuss the new capa-
bility of APDT that enables distributed agile planning meetings. Usually, remote
stakeholders find it hard to communication in a spatially separated environment.
Therefore, some tools like DAP [2] were employed to help distributed communica-
tion. There are some obvious shortcomings. First, it is hard to keep all ends of
communication synchronized. Second, there is no mechanism to encourage remote
communication – in some cases remote communication might even be discouraged
because of how unnatural meeting interactions become. APDT attempts to overcome
these shortcomings and provide mitigation for the challenges surrounding distributed
planning meetings.

www.manaraa.com

262 X. Wang et al.

2 Agile Planner for Digital Tabletop (APDT)

The new capabilities of APDT were designed to support activities of distributed project
planning, and migrate natural behaviours from traditional settings to computer-based
environments. APDT utilizes interaction features of digital tabletop to enhance group
collaborations and bridge communication gaps among distributed teams. Figure 1
shows a live meeting between two groups located in two different physical spaces.

Fig. 1. Tabletop based distributed agile planning

APDT allows for multimodal interaction with the digital tabletops. It implements:
1) finger touch or mouse events 2) gesture recognition, 3) handwriting recognition,
and 4) voice command recognition. To support distributed collaborations, telepointers
(remote mouse pointers) are used so that the finger movement of the participant at one
location could be broadcasted to every other location in the meeting scenario. Story
card operations, such as creating/deleting cards are also supported. APDT can be
connected with other agile planning platforms. A gateway to other team applications
is developed so that the XML formatted data of project meeting from APDT is easily
shared by other applications. At present, APDT can communicate with IBM Jazz [3]
and Rally [4]. We have deployed APDT on SMART Board and SMART Table.
SMART Board has a 183cm x 122cm screen, employing DViT technology to support
at most 2 concurrent touches. SMART Table has 55.9cm x 41.9 cm active screen
area, utilizing TFIR technology to support about 40 simultaneous touches. Although
we still have some issues to tackle in our solution, our initial evaluation of the distrib-
uted aspect of APDT, in controlled settings, yielded positive results. We intend to
extend the study to observe real settings, and report the outcomes in the near future.

References

1. Ghanam, Y., Wang, X., Maurer, F.: Utilizing Digital Tabletops in Collocated Agile Plan-
ning Meetings. In: Proceedings of the Agile Conference 2008, Toronto (2008)

2. Morgan, R., Walny, J., Kolenda, H., Ginez, E., Maurer, F.: Using Horizontal Displays for
Distributed & Collocated Agile Planning. In: Concas, G., Damiani, E., Scotto, M., Succi, G.
(eds.) XP 2007. LNCS, vol. 4536, pp. 38–45. Springer, Heidelberg (2007)

3. IBM Jazz Server, http://www-01.ibm.com/software/rational/jazz/ (last
accessed March 10, 2009)

4. Rally Software, Rally’s Agile Life Cycle Management Solutions,
http://www.rallydev.com/ (last accessed March 10, 2009)

www.manaraa.com

The Future of Lean in an Agile World

Steven Fraser1, Pekka Abrahamsson2, Rachel Davies3,
Joshua Kerievsky4, Mary Poppendieck5, and Giancarlo Succi6

1 Director, Cisco Research Center, USA
sdfraser@acm.org

2 Professor, Helsinki University, Finland
pekka.abrahamsson@cs.helsinki.fi

3 Coach, UK
rachel.davies@tiscali.co.uk

4 Principal, Industrial Logic, USA
Joshua@industriallogic.com

5 President, Poppendieck LLC, USA
mary@poppendieck.com

6 Director and Professor, Bolzano Free University, Italy
Giancarlo.Succi@unibz.it

Abstract. Lean was first popularly exposed to the Agile Software development
community with the publication of Mary and Tom Poppendieck’s book “Lean
Software Development: An Agile Toolkit” in 2003. While there has been much
interest in Lean software practices, they have not attracted quite the same de-
gree of popularity in the literature as other “Agile” practices. Why is this so? Is
Lean harder to adapt and adopt – does Lean require a greater critical mass (team
and system scope and scale) to make value tangible? What are the challenges
that Lean is best suited to address? What are the areas for ongoing research and
how should we proceed? – These are some of the questions that will be dis-
cussed and debated by this panel of leading practitioners and academics.

1 Steven Fraser (Panel Impresario)

STEVEN FRASER is the Director of the Cisco Research Center in San Jose California
with responsibilities for developing and managing university research collaborations.
Previously, Steven was a member of Qualcomm's Learning Center in San Diego,
California with responsibilities for technical learning and development. Steven held a
variety of technology management roles at BNR/Nortel including Process Architect,
Senior Manager (Global External Research), and Design Process Advisor. In 1994, he
was a Visiting Scientist at the Software Engineering Institute (SEI) at Carnegie
Mellon University (CMU) collaborating on the development of team-based domain
analysis (software reuse) techniques. Fraser was the XP2006 General Chair, the
Corporate Support Chair for OOPSLA'07 and OOPSLA’08, and Tutorial Chair for
both XP2008 and ICSE 2009. Fraser holds a doctorate in EE from McGill University
in Montréal - and is a member of the ACM and a senior member of the IEEE.

www.manaraa.com

264 Panel

2 Pekka Abrahamsson

PEKKA ABRAHAMSSON is a full professor of computer science in University of
Helsinki. He holds also an adjunct chief scientist s position in SINTEF, Norway.
current responsibilities include managing a FLEXI-ITEA2 project, which involves 35
organizations from 7 European countries. The project aims at developing agile
innovations in the domain of global, large and complex embedded systems develop-
ment. His previous project was awarded an ITEA Achievement for outstanding
industrial impact. His research interests are centred on business agility and lean
software development, agile software development and empirical software engineer-
ing. He has coached several agile software development projects in industry and
authored more than eighty scientific publications focusing on software process and
quality improvement, agile software development and mobile software. He was a
Nokia Foundation Award in 2007 for his achievements in software research.

Many position the lean thinking and agile development in the same school of
thought. Still, the lean angle of agile development has received considerably less
attention in research and practice. One reason for this may be the fact that many agile
transformations are bottom-up endeavors. After successfully practicing agile for a
period of time, companies tend to find an increasing pressure to move towards lean. It
appears to be evident that the lean concepts communicate better to the managers and
senior managers than those of agile. Yet, while the lean philosophy has existed for
several decades, I would suggest that there is still room for novel interpretations of the
lean thinking into the volatile software business environments. An interesting debate
is ongoing whether the lean culture can be fully grasped by the western software
world even though apparently this has been achieved in the manufacturing business.
Answers are soon to come since e.g. European large software industry and research
has begun its efforts to research and develop the lean capabilities and understanding
further.

3 Rachel Davies

RACHEL DAVIES is an Agile Coach whose expertise is recognized internationally
across the XP, Scrum, and DSDM communities. She has more than 20 years experi-
ence in software development and started her own agile journey in 2000 as a pro-
grammer in an XP team. Rachel has served on the board of directors of the Agile
Alliance for 6 years. Rachel has presented at numerous conferences on topics related
to agile coaching and has participated in the XP 200x conference program every year
since 2001. She has written a book on Agile Coaching which is to be published by
Pragmatic Bookshelf in the summer of 2009.

I've worked with a number of companies keen to implement a Lean approach.
What I found was that the teams loved the Lean ideas they read about, but they got
stuck in turning principles into practice. They needed practical advice on how to
connect Lean thinking with Agile practices. It's also hard for teams to know what
Agile practices don't map to Lean.

I've been surprised by the reaction in the Agile community to Kanban, which
applies Lean principles of flow and limits work-in-progress. It seems that abandoning

www.manaraa.com

 Panel 265

iteration planning activities is too extreme for some. My position on this panel is that
Lean is not a panacea but can lead us to rethink how we apply agile in different
contexts.

4 Joshua Kerievsky

JOSHUA KERIEVSKY leads Industrial Logic, a consultancy that guides organizations in
Agile transitions. He is an expert in Extreme Programming and Agile Management,
and a prolific author of eLearning literature on Refactoring, TDD and Patterns.

Lean is important to Agile Development because it focuses on Values rather than
Practices. Lean suggests the importance of eliminating waste, yet it does not tell you
how to do it. Thus, practitioners of Lean are free to invent ways to be lean, guided by
lean values, which themselves are derived from solid and successful manufacturing
realms.

I have found that the Lean terminology appeals to a vast number of people, particu-
larly non-technical people. So it also offers an excellent way to connect Agile/XP
concepts with people who are new to the movement.

The more I learn about Lean, the more I like it and see it as a great contribution to
the Agile movement.

5 Mary Poppendieck

MARY POPPENDIECK has been in the Information Technology industry for over thirty
years. She has managed software development, supply chain management, manufac-
turing operations, and new product development. She spearheaded the implementation
of a Just-in-Time system in a 3M video tape manufacturing plant and led new product
development teams, commercializing products ranging from digital controllers to 3M
Light Fiber™. Mary is a popular writer and speaker, and co-author of the book Lean
Software Development, which was awarded the Software Development Productivity
Award in 2004. A sequel, Implementing Lean Software Development, was published
in 2006. A third book, Leading Lean Software Development, will be published in late
2009.

In the 1950’s, Toyota was scrambling to stay alive in a shattered economy. After a
massive cash flow crisis triggered devastating layoffs, the company’s leaders
scrambled to conserve cash. There would be no more building of cars – or even car
parts – unless there was a ready buyer. There would be no more wasting good parts on
a bad car – bad quality would have to be discovered and its cause corrected immedi-
ately. There would be no more people specializing in a single job because this caused
too much waiting – work waiting for specialists or specialists waiting for work. There
would be no more wishful thinking when designing a new car – and no more re-
inventing the wheel either. A vast amount of ingenuity was aimed at making every
yen and every minute and every bit of experience count.

Now, more than ever, software development needs the same attitude. Lean is about
doing things just-in-time rather than just-in-case – the only rational approach in hard
economic times. It is about never letting defects into code, as opposed to finding them

www.manaraa.com

266 Panel

and fixing them later – and about rethinking what that really means, given today’s
technology. It is about leveraging the creative potential of every single person, and
about never getting complacent – because the current approach just simply isn’t good
enough for survival. By its very nature, lean requires a systems perspective, because
there is no such thing as partial survival.

Since lean boils down to focusing all assets on survival, lean ideas thrive in a rough
economy or a tough competitive landscape – and it tends to falter when there is no
tension, when there are too many politics, and when there is too much success.

6 Giancarlo Succi

GIANCARLO SUCCI is a Professor at the Free University of Bolzano-Bozen, Italy
where he directs the Center for Applied Software Engineering. Before joining the
Free University of Bolzano-Bozen, he was a Professor at the University of Alberta,
Canada. He was also CEO of a small software company, EuTec. Succi holds a
Doctorate in Computer EE from the University of Genoa and has been a registered
Professional Engineer in Italy since 1991.

The Lean revolution has focused on two aspects: elimination of muda (waste) and
the introduction of Jidoka (automation). Significant work has concentrated on the
former, much less on the latter.

In particular, a plethora of software engineering tools are based on the ”push”
paradigm: the user has to regularly run a tool to discover which rules are not fulfilled
and to decide if an action is required. This occurs also in Agile environments. I claim
that in software production we need to emphasize more the "pull" aspect of Lean,
where the tools or the involved people performs the check automatically for the
software engineer.

To my knowledge all proposals to insert Jidoka in software production relate to
automated testing and continuous integration. I agree that automated testing and
continuous integration (and the use of tools supporting it such as jUnit and Cruise-
Control) implement the idea of Jidoka, but this is only one aspect of quality in
software development. Also other quality attributes about the code produced and the
process can and should make use of Jidoka during software production. Tools for
non-invasive measurement can be instrumental to achieve this goal.

www.manaraa.com

What Skills Do We Really Need in Agile Software
Development? – Discussion of Industrial Impacts

and Challenges

Minna Pikkarainen1, Kieran Conboy2, Daniel Karlstöm3, Jari Still4,
and Joshua Kerievsky5

1 VTT Technical Research Centre of Finland
minna.pikkarainen@vtt.fi

2 NUI Galway
kieran.conboy@nuigalway.ie

4 Golden Gekko Ltd
dk@goldengekko.com

4 Jari Still
Jari.Still@f-secure.com

6 Joshua Kerievsky
joshua@industriallogic.com

1 Summary of the Panel Discussion

Agile methods are largely used in software intensive companies in all over the world
[1-3]. It seems that the use of agile methods have a high impact on the skills that are
needed in software development [4]. For instance, in agile context, developers need to
have capabilities to communicate all the information and continuously work as a part
of the social teams (communication and agile [5]).

This panel discussion will be based on the research that focuses on understand im-
pacts of agile software development on skills in software intensive organizations. The
panel presentation will be done using the experienced of several companies doing
agile software development. Based on the current experiences, it is revealed that:

1 The companies deploying agile methods do not usually have any training
programs or plans for agile transition. This is the fact also in the situations in
which the agile has been planning to be taken into use in large and globally
distributed system development.

2 Due to the skill requirements, transition to agile seems to be quite painful
process for many companies. The use of agile methods may cause an effect
that developer’s feel that their career progression does not exist anymore and
that their importance as technical specialists is totally disappearing.

3 The use of agile methods causes also political issues that need to be taken
into consideration when implementing the transition and agile based software
development. Sociality increases contacts between the people who do not
have communicated before and new issues may appear that have not been
taken in the consideration before.

www.manaraa.com

268 Panel

4 The bonus system of the companies needs to be changed. The developers
should get the price of the work more as a team than as individuals which is
the basic situation in many companies. Performance of the teams and com-
panies should also be measured somehow and companies are seeking for
good metrics how to do that.

2 Audience the Panel Discussion

It seems that the agile methods are now used also in the context in which they were
not originally invented. They are quite common now also in the context of safety
critical [6] [7, 8] large [9] and globally distributed [10] software development. This is
creating challenges that directly affect on the work of the people and needed skills
among the development teams and organizations.

Agile methods are also an important tool also for several consultancy companies
who work in the field of software development. From their point of view, it would be
significant to hear what kind of skills agile software development actually demands
both in the teams and in organizations. As it seems that there is a lack of research
related to the skills in agile software development context the topic would be also
relevant for research organizations.

Attendees: industries: large and small; consultancy companies; researchers.

3 How the Panel Discussion Will Be Structured and Run?

The panel discussion will be held following. First each of the panellists will give a
short presentation to the audience.

After the presentation the discussion will be held. The goal is first to present the
challenges that attendants have found of this topic and then discuss of the results
together with the whole group. The purpose of the approach is to reveal both chal-
lenges and solutions that attendants have related to the skills and agile software de-
velopment.

During the discussions presenters will give examples based on the experiences of
the companies that they have interviewed of this topic.

4 Bio of the Panelists

The panel discussion will be held together with the researchers and industrial people
above.

Moderator
Minna Pikkarainen has graduated from the Department of Information Processing
Science, University of Oulu and finished her PhD about the topic of improving soft-
ware development mediated with CMMI and agile practices at 2008. Minna has been
working as researcher and project manager in VTT Technical Research Centre of
Finland more than 11 years now. During that time she has worked in 18 industrial

www.manaraa.com

 Panel 269

driven research projects doing close industrial collaboration with 8 organizations
in Finland and in Ireland. Minna has participated as a key person for several large
international ITEA project preparation work doing full project proposals and project
outlines as collaboration together with large European level company networks
(e.g. Flexi and Evolve projects). During 2007 – 2009 Minna has been leading VTT
research group of the Large European projects called Agile ITEA (embedded agile
software development) and Finnish consortium of ITEI (project about open innova-
tions). Minna’s research has been published in several journal and conference papers
in the forums like ICSE, ICIS and Empirical Software Engineering Journal. So far
Minna has provided agile trainings, workshops and invited talks for 10+ different
industries related to agile methods. Minna has been member of Lero, The Irish Soft-
ware Engineering Research Centre since 2006. For the past 4 years, her work and
publications have been focused on research in the area of agile software development.

Kieran Conboy is a lecturer in information systems at the National University of
Ireland Galway. His research focuses on agile systems development approaches as
well as agility across other disciplines. Kieran is currently involved in numerous na-
tional and international projects in this area, and has worked with many companies on
their agile initiatives including Intel, Microsoft, Accenture, HP, and Fidelity Invest-
ments. Kieran has chaired related conferences including the European Conference in
Information Systems (Galway 2008) the XP and Agile Development Conference
(Limerick 2008) and also has chairing roles at XP2009 and XP2010. Some of his
research has been published in various leading journals and conferences such as the
European Journal of Information Systems, the International Conference in Informa-
tion Systems (ICIS), the European Conference in Information Systems (ECIS), IFIP
8.6 and the XP200n conference series. He is also associate editor of the European
Journal of Information Systems. Prior to joining NUI Galway, Kieran was a manage-
ment consultant with Accenture, where he worked on a variety of projects across
Europe and the US. Kieran can be reached at kieran.conboynuigalway.ie.

Daniel Karlström is Chief Operating Officer and co-founder of Golden Gekko Ltd. a
leading mobile application production company with operations in Europe, US and
Asia. Daniel received a Ph.D. degree in Software Engineering from Lund University
in 2004. His research interests include integrating agile practice with software product
development. He has more than 15 years of experience in the software business both
in software development and software process consulting all over the world. He has
been involved in the agile community and conferences since 2000.

Jari Still is F-Secure Oy's Oulu Office site manager and the head of Mobile R&D.
Still has been working at F-Secure since 2000. From 1991 to 2000 Still was working
as CEO of Modera Point Oy. Before 1991 Still had worked with e.g. Nokia Mobile
Phones and Siemens. Still is one of the founders of the Oulu Software Forum, and
also has been acting as a Chairman of the Forum. Other posts have been e.g. Chair-
man of revontuliryhmä, Chairman of business development group in Oulu Innovation
project and member of the Board in several companies. Related to Agile processes
and product development Still is currently acting as a leader in FLEXI (ITEA) -
project at F-Secure and he is also a Chairman of the management group of FLEXI

www.manaraa.com

270 Panel

Finland -project. Before the FLEXI project on 2004-2007 Still started and lead Agile
development at F-Secure in AGILE (ITEA) project.

Joshua Kerievsky leads Industrial Logic, a consultancy that guides organizations in
Agile transitions. He is an expert in Extreme Programming and Agile Management,
and a prolific author of eLearning literature on Refactoring, TDD and Patterns.

5 Past History of the Panel Discussion

The panel discussion will be based on both the research and industrial experiences
related to the impacts of agile skills in software development.

References

[1] Schwaber, C., Fichera, R.: Corporate IT Leads the Second Wave of Agile Adoption
(2005)

[2] Tan, C.H., Teo, H.H.: Training Future Software Developers to Acquire Agile Develop-
ment skills. Communications of the ACM 50, 97–98 (2007)

[3] Ambler, S.W.: Survey Says..Agile Has Crossed the Chasm. Dr. Dobb’s Journal: The
World of Software Development 32, 59–61 (2007)

[4] Boehm, B., Turner, R.: Balancing Agility and Discipline. In: Balancing Agility and Dis-
cipline -A Guide for the Perplexed, p. 304. Addison Wesley, Reading (2003)

[5] Pikkarainen, M., Haikara, J., Salo, O., Abrahamson, P., Still, J.: The Impacts of agile
practices on communication in software development. Empirical Software Engineer-
ing 13, 303–337 (2008)

[6] Fitzgerald, B., Hartnett, G., Conboy, K.: Customising Agile Methods to Software Prac-
tices at Intel Shannon. European Journal of Information Systems 15, 200–213 (2006)

[7] McCaffery, F., Pikkarainen, M., Richarsson, I.: AHAA -Agile, Hybrid Assessment
Method for Automotive, Safety Critical SMEs. In: ICSE 2008, Leipzig, Germany (2008)

[8] Drobka, J., Noftz, D., Raghu, R.: Piloting XP on Four Mission Critical Projects. IEEE
Software 21, 70–75 (2004)

[9] Lindvall, M., Muthig, D., Dasnino, C.W., Stupperich, M., Kiefer, D., Kähkönen, T.: Ag-
ile Software Development in Large Organizations. Computing Practices 37, 38–46 (2004)

[10] Layman, L., Williams, L., Damian, A., Bures, H.: Essential Communication Practices for
Extreme Programming in a Global Software Development Team. Information and Soft-
ware Technology 48, 781–794 (2006)

www.manaraa.com

Perspectives on Agile Coaching

Steven Fraser1, Erik Lundh2, Rachel Davies3,
Jutta Eckstein4, Diana Larsen5, and Kati Vilkki6

1 Director – Cisco Research Center, USA
sdfraser@acm.org

2 Principal, Compelcon, Sweden
erik.lundh@compelcon.se

3 Coach, UK
rachel.davies@tiscali.co.uk
4 Partner, IT Communications, Germany

jutta@jeckstein.com
5 Partner, FutureWorks, USA

dlarsen@futureworksconsulting.com
6 Manager, Nokia Siemens Networks, Finland

kati.vilkki@nsn.com

Abstract. There are many perspectives to agile coaching including: growing
coaching expertise, selecting the appropriate coach for your context; and eva-
luating value. A coach is often an itinerant who may observe, mentor, negotiate,
influence, lead, and/or architect everything from team organization to system
architecture. With roots in diverse fields ranging from technology to sociology
coaches have differing motivations and experience bases. This panel will bring
together coaches to debate and discuss various perspectives on agile coaching.
Some of the questions to be addressed will include: What are the skills required
for effective coaching? What should be the expectations for teams or individu-
als being coached? Should coaches be: a corporate resource (internal team of
consultants working with multiple internal teams); an integral part of a specific
team; or external contractors? How should coaches exercise influence and au-
thority? How should management assess the value of a coaching engagement?
Do you have what it takes to be a coach? – This panel will bring together sea-
soned agile coaches to offer their experience and advice on how to be the best
you can be!

1 Steven Fraser (Panel Impresario)

STEVEN FRASER is the Director of the Cisco Research Center in San Jose California
(www.cisco.com/research) with responsibilities for developing and managing university
research collaborations. Previously, Steven was a member of Qualcomm's Learning
Center in San Diego, California with responsibilities for technical learning and devel-
opment. Steven held a variety of technology management roles at BNR, NT, and Nortel
including Process Architect, Senior Manager (Global External Research), and Design
Process Advisor. In 1994, he was a Visiting Scientist at the Software Engineering
Institute (SEI) at Carnegie Mellon University (CMU) collaborating on the development

www.manaraa.com

272 Panel

of team-based domain analysis (software reuse) techniques. Fraser was the XP2006
General Chair, the Corporate Support Chair for OOPSLA'07 and OOPSLA’08, and
Tutorial Chair for both XP2008 and ICSE 2009. Fraser holds a doctorate in EE from
McGill University in Montréal - and is a member of the ACM and a senior member of
the IEEE.

Steve’s interest in Agile Coaching began with innovation coaching interventions in
the mid-1990s and contributions to team methods of the FODA (Feature-Oriented
Domain Analysis) software reuse process at the Software Engineering Institute (SEI)
on the campus of Carnegie Mellon University (CMU) in Pittsburgh. As Director of
the Cisco Research Center he leads the coordination of external research interactions
between Cisco technical staff and university researchers – with a personal interest in
software engineering related research.

2 Erik Lundh

ERIK LUNDH has more than 25 years experience in software development roles
ranging from developer to R&D manager and board member. He is the Principal of
Compelcon AB (www.compelcon.se), located in Helsingborg, Sweden. Company
experience has included small, but mature innovation firms, start-ups large large
organizations such as Ericsson and ABB. Erik had technical, ‘Peopleware’ [1] and
organizational interests since the early 80s. Erik programmed military and industrial
just-in-time (Lean) applications in the 1980’s, was a “process and management guy”
in the 1990’s, and spent the fun part of the 2000’s as an agile evangelist and coach.
Erik is a core member and organizer of SPIN communities in Sweden and contributes
to agile standards work through the IEEE. Erik has participated in all of the XP200x
series of conferences (since 2000). In 2006 Erik was invited to Ericsson’s first major
agile transformation of 2300 R&D people at 10 sites in 5 countries. Erik currently
works with executives in the Ericsson group on agile transformation initiatives where
the internal agile coach is a key player. Erik is a founder of the international Agile
Coaches Guild (www.agilecoachesguild.org).

In 2000, I suddenly became an agile coach. I had talked about agile since 1999
with clients and at conferences with the intention to host a few experienced (XP)
coaches. We intended to build R&D Centers using agile, but dire times struck in
2000. My clients told me to walk the agile talk myself – instead of hiring help. I did –
coached my first team – had instant success, and found that the outer form of XP’s
‘novice rules’ [2] married well with my insights from just-in-time, patterns and
‘Peopleware’[1]. My position on agile coaching is to create success and move on. My
family life did not allow for onsite full time long-term gigs, and I discovered that it
made me much more effective as a coach, but also distinctly transitional.

My teams attained self-sufficiency quickly so I was able to engage many teams and
companies. I am proud that most of ‘my’ teams turned into successes, first in months,
later in weeks. I learned to recognize agile failure scenarios, which I could turn
around and which I should avoid. When I was invited to participate in the first agile
transition at Ericsson, it became evident that we had to grow a competency of agile
coaching. We started in recruitment in 2007 and founded our first international group

www.manaraa.com

 Panel 273

of 30 agile coaches. At XP2008 I was thrilled to learn that companies like Nokia has
started on similar journeys – growing their own cadre of agile coaches.

Many R&D and IT organizations are challenged by their business and work envi-
ronments. From my perspective, agile coaches should offer people guidance on
balance and a better work-life. Agile coaching is sometimes confused with facilitation
or even technical, project and management work. In my opinion – to be an Agile
Coach is a calling – not a meal ticket. However, in dire times, agile coaches may need
to rely on broader set of core competencies, since soft roles are prime targets for
corporate cost reductions.

1. DeMarco, T., Lister T.: Peopleware: Productive Projects and Teams. New York:
Dorset House, 1st edition 1987. (ISBN 0-932633-43-9). 2nd edition in 1999, (ISBN
0-932633-43-9)

2. ‘The Dreyfus Model of Skills Acquisition’ In: Hunt, A.: Pragmatic Thinking and
Learning, chapter 2 “Journey from Novice to Expert”, pp. 29-56. Pragmatic
Bookshelf, 2008, (ISBN 1-934356-05-0)

3 Rachel Davies

RACHEL DAVIES is an Agile Coach whose expertise is recognized internationally
across the XP, Scrum, and DSDM communities. She has more than 20 years experi-
ence in software development and started her own agile journey in 2000 as a pro-
grammer in an XP team. Rachel has served on the board of directors of the Agile
Alliance for 6 years. Rachel has presented at numerous conferences on topics related
to agile coaching and has participated in the XP 200x conference program every year
since 2001. She has written a book on Agile Coaching which is to be published by
Pragmatic Bookshelf in the summer of 2009.

In writing my book about Agile Coaching, I have spent a lot of time examining
what I do when I coach Agile teams. The key for me is not to solve problems for
teams; instead the teams need to do the work.

As a coach, I show them alternatives and help them to reflect about what to do
next. This is very different to what I see Scrum Masters doing. Too many organiza-
tions seem to think being Agile is about planning and tracking every move of the
team. Doing this prevents the teams from taking responsibility for their own actions.
The role of an Agile Coach is to help the team think for themselves and not to remove
impediments and micro-manage the team's every move. I believe that organizations
need to accelerate agile transitions with Agile Coaches not Scrum Masters.

4 Jutta Eckstein

JUTTA ECKSTEIN Jutta Eckstein, a partner of IT communication, is an independent
consultant, coach and trainer from Braunschweig, Germany. Her know-how in agile
processes is based on over ten years experience in developing object-oriented applica-
tions. She has helped many teams and organizations to make the transition to an agile
approach. She has a unique experience in applying agile processes within medium-
sized to large distributed mission-critical projects. This is also the topic of her already

www.manaraa.com

274 Panel

published book ‘Agile Software Development in the Large’ and of the one she’s
currently writing on ‘Distributed Agile Software Development’. Besides engineering
software she has been designing and teaching OT courses in industry. Having com-
pleted a course of teacher training and led many 'train the trainer' programs in industry,
she focuses also on techniques which help teach OT and is a main lead in the peda-
gogical patterns project. She has presented work in her main areas at ACCU (UK),
JAOO (Denmark), OOPSLA (USA), XP (Europe) and Agile (USA).

I became a coach after several years of being a developer both on- and off-site. At
the time I started working for ParcPlace I was at first used to be called-in as a "fire-
fighter" for our customers. After a while some of these customers decided to call me
in before their fires started.

Every team and every team member carries a wide range of good and bad practices
concerning software development processes. As a coach it is very important to mine
this knowledge and use it for defining the team's own process. Thus it is much more
important to respect the experiences of the team than the experiences of some process
methodologist. Of course the knowledge of colleagues and other process methodolo-
gists is a great source for filling the gaps in the team's own process and for improving
it. Regular project retrospectives after really short iterations help to find these gaps
and the necessary improvements. As soon as the team trusts the process and knows
how to make any necessary changes the coach needs to step out – since the team can
only organize itself when it really gets the responsibility for doing so. The coach must
lead the team towards self-organization – this is achieved by leaving the team as soon
as possible.

If you are looking for a coach, I would absolutely recommend one with strong
social skills rather than simply technical skills. I have never seen a project fail
because of technical reasons. Thus the coach has to be a catalyst, a facilitator, an
ombudsman, a team player, and someone able to make hard decisions.

5 Diana Larsen

DIANA LARSEN is a senior consultant and partner at FutureWorks Consulting
(www.futureworksconsulting.com) in Portland, Oregon. Diana consults with leaders
and teams to create work processes where innovation, inspiration, and imagination
flourish. With more than fifteen years of experience working with technical profes-
sionals, Diana brings focus to the human systems of organizations, teams and projects.
She activates and strengthens her clients’ proficiency in shaping an environment for
productive teams and thriving in times of change. Diana co-authored "Agile Retro-
spectives: Making Good Teams Great!" and writes articles and occasional blog posts.
Currently serving as chair of the Agile Alliance Board of Directors, she co-founded the
Agile Open Northwest conference and the international Retrospective Facilitators
Gathering.

My role with XP/Agile projects falls into the categories of consulting to the or-
ganization and coaching the coaches. My first team coaching assignment happened in
1965 when, as a teenager, I progressed from managing editor of my high school
weekly newspaper to editor-in-chief, then past editor. As past editor, I still had an
active role to play though I was no longer writing or editing news articles, features

www.manaraa.com

 Panel 275

stories, or editorials. I became a mentor and coach to the whole newspaper staff. As
the first of scores of team coaching assignments I would step into over the next 40+
years, that experience signaled the beginning of my fascination with people working
in groups – whether teams or organizations – and how those groups develop into
strong, effective actors in their environments or spiral into dysfunction. Now I
mentor others who have that same passion to see their teams acquiring the mysterious,
powerful synergy that we only find when we work well together.

Agile coaches focus on the total health of the team, including healthy performance,
productivity, and working relationships. Many people come well equipped to foster
health in one or two of the three areas. Few show strength at all of them. Agile
coaching requires daily, pragmatic attention to individual contributions, as well as an
understanding of the team as a whole system functioning within a larger system. Even
more than others, Agile coaches deal with the issues of ambiguity, transparency, and
paradox; bringing new perspectives and frames, as well as guidance on approach,
process and practices. Their value to the team, and to the enterprise, lies in their
ability to support the team in sticking to agreements, making the most of feedback of
all kinds, finding areas of continuous improvement, adding value to the product, and
staying accountable. They direct, guide and evaluate the team’s progress when
needed, yet know when to step back, follow, and encourage shared leadership among
team members too.

It’s a tough role that spans a wide range of skills, behaviors, natural aptitudes, and
business knowledge, in addition to an ability to function in the “threshold” space—at
once a valued part of the team, standing outside the team, and working as a liaison
between the team, its customers and stakeholders, and the organization.

6 Kati Vilkki

KATI VILKKI heads the Agile Coaching team at Nokia Siemens Networks (NSN). Since
Kati joined Nokia in 1994 after completing her Masters in Computer Science from
Helsinki University, she has held various management and development positions
mostly within product development. Kati also has a broad experience in organizational
and leadership development. She has headed quality and process management,
managed software process and other improvement programs, driven operational mode
development and has been the change agent for many different projects. Starting in
2005 one of Kati’s key change programs was the agile transformation of an NSN
environment with very large-scale programs and an organization which had a long
tradition of “waterfall” development modes. As a result of the successful changes –
agile development is now firmly established in the software process.

In my definition an agile coach is someone who "lives with the organization -
team"; they coach for a extended period of time in comparison to a consultant who
often has a looser and shorter relationship with the team. In agile transformation we
need trainers, consultants, facilitators, change agents – and above all – agile coaches.
Ideally a coach should be able to work in all these capacities: train, demonstrate new
practices and facilitate organizational learning. In my opinion, facilitating learning is
the coach’s most important contribution.

www.manaraa.com

276 Panel

Agile transformation requires learning in many areas: agile thinking and change in
the mind-set, how to use the different agile practices and methods, how to achieve a
paradigm shift, and how to change the organizational and management culture. Very
few coaches have all needed skills – from coaching a team of developers to use XP
practices – to what kind of changes are required in an organization of several
thousand people. Even if a coach is familiar with all areas of required change – the
organization most often requires several coaches; some people are more credible with
leadership teams and others with development teams. Once an organization puts
“coach” in a “team coach” or a “management coach” box, it is very difficult for a
coach to escape. Agile coaches need to have different backgrounds and they need to
work in close cooperation with others.

My best experience coaching was with a combination of internal and external
coaches. Externals provide an outside view and have a different kind of credibility,
which comes from working with a diversity of organizations. Internal coaches know
the local circumstances and the people – working in pairs or coaching teams both
views can be utilized. Ideally one should never coach alone – with a pair or a team of
coaches – the learning opportunities are much richer.

www.manaraa.com

Author Index

Abbattista, Fabio 149
Abrahamsson, Pekka 13, 206, 215,

232, 263
Aurum, Aybüke 53

Babar, Muhammad Ali 232
Bache, Emily 217
Barney, Hamish T. 53
Bianchi, Alessandro 149
Bjørnson, Finn Olav 94
Bogsnes, Bjarte 5
Brolund, Daniel 251
Brown, Jennifer K. 104

Causevic, Adnan 240
Chao, Joseph T. 104
Coman, Irina Diana 43
Conboy, Kieran 142, 161, 206, 221, 267
Connolly, David 245
Cooper, Kendra 215
Coyle, Sharon 142

Damdul, Namgyal 245
Davies, Rachel 198, 263, 271
Diaz, Jessica 247
Dingsøyr, Torgeir 94, 114
Di Penta, Massimiliano 234
Donnellan, Brian 136
Duarte, Vasco 219
Dyb̊a, Tore 53

Eckstein, Jutta 271
Evers, Marc 204

Falcini, Fabio 130
Fraser, Steven 213, 263, 271
Fronza, Ilenia 242

Garbajosa, Juan 180, 247
Ghanam, Yaser 215, 257, 259, 261
Gusmão, Cristine 124

Härkönen, Janne 226
Hoda, Rashina 186
Höfer, Andreas 33

Hosseini-Khayat, Ali 257
Hunt, Johanna 236
Hussain, Zahid 174
Hyysalo, Jarkko 249

Ihme, Tuomas 13

Jacobson, Ivar 1

Karlstöm, Daniel 267
Kautz, Karlheinz 168
Keenan, Frank 245
Kelly, Sandra 245
Kerievsky, Joshua 263, 267
Khandkar, Shahedul Huq 259
Kim, Eunha 8
Klärck, Pekka 226
Korhonen, Kirsi 73
Korkala, Mikko 161
Krasteva, Iva 240
Krzanik, Lech 249
Kua, Patrick 211
Kuvaja, Pasi 249

Lami, Giuseppe 130
Land, Rikard 240
Lane, Michael 221
Lanubile, Filippo 149
Larsen, Diana 236, 271
Larsson, Andreas 196
Linna, Tommi 249
Lundh, Erik 230, 238, 271
Lundqvist, Kristina 63

Maciel, Teresa 124
Marchenko, Artem 13, 219
Marshall, Stuart 186
Martinez, Jabier 247
Maurer, Frank 23, 215, 257, 259, 261
Milchrahm, Harald 174
Moe, Nils Brede 53, 114
Morasca, Sandro 234
Murphy, Paul 136

www.manaraa.com

278 Author Index

Na, Jongchae 8
Nicolette, Dave 194
Nilsson, Thomas 196
Noble, James 186

Oza, Nilay 206

Park, Shelly 23, 257, 259, 261
Perez, Jennifer 247
Philipp, Marc 33
Pikkarainen, Minna 161, 221, 267
Pinggera, Jakob 253
Pinheiro, Caryna 124
Poole, Charlie 202
Poppendieck, Mary 263
Pullicino, James 198

Rantanen, Juha 226
Remencius, Tadas 255
Rodŕıguez, Pilar 180, 249
Rohunen, Anna 249
Rouiller, Ana 124
Ryoo, Seokmoon 8
Røyrvik, Emil A. 114

Sajeev, Abdulkadir S.M. 240
Sandberg, Jan-Erik 200
Santana, Célio 124
Sato, Danilo 192
Scholl, Wolfgang 83
Shahzad, Sara 174
Sillitti, Alberto 234, 255
Similä, Jouni 249

Sk̊ar, Lars Arne 200
Slany, Wolfgang 174
So, Chaehan 83
Soares, Liana 124
Srinivasan, Jayakanth 63
Steyaert, Patrick 228
Still, Jari 267
Succi, Giancarlo 43, 242, 255, 263
Sundberg, Thomas 224
Sundmark, Daniel 240

Tellez-Morales, Gabriel 155
Tourwé, Tom 228
Trindade, Francisco 192
Tscheligi, Manfred 174

van de Goor, Wim 209
van den Ende, Willem 204
van den Oord, Stefan 209
Vasconcelos, Alexandre 124
Vilkki, Kati 271

Wang, Xiaofeng 221
Wang, Xin 261
Weber, Barbara 253
Wild, Werner 253
Winata, Martha 53
Wolkerstorfer, Peter 174

Yagüe, Agust́ın 180

Zugal, Stefan 253

